

FIGURE 1. Data in panels (a) and (b) show that the growth rate of Fe_3C_x approaches a constant value as the pulse lengths of (a) $Fe(\text{amd})_2$ and (b) H_2 plasma increase, respectively. (c) Growth rate as a function of the purge length after the $Fe(\text{amd})_2$ pulse. (d) Growth rate as afunction of the plasma RF input power. (e) Film thickness as a function of the total ALD cycles. (f) Growth rate as a function of deposition temperature.

FIGURE 2. Representative (a)SEM and (b) AFM images for a \sim 12 nm Fe₃C_x film deposited at 90 °C with 300 ALD. (c) Cross-sectional SEM image showing that the Fe₃C_x film was conformally deposited inside a deep narrow trench with a high aspect ratio of 20:1.

TABLE 1. XPS results-elemental composition of the ALD Fe₃C_x films deposited at 90 °C using H₂ plasma pulse lengths of 10s.

Pulse length of	Fe	С	N	О
H ₂ plasma (s)	(at.%)	(at.%)	(at.%)	(at.%)
10	73.57	23.80	0.65	1.98
0 Pure carbon 82 nm Fe ₃ C _X -50 -100 -100 -100 -100 -150 -0.8 -0.6 -0.4 -0.2 Potential vs. RHE(V)	0.0		On thitial through the sound through through the sound through the sound through through the sound through the sound through through through the sound through through through the sound through the sound through the sound through the sound through through the sound	ov -0.4 -0.2 0.0 ial vs. RHE(V)

 $\textbf{FIGURE 3.} \ (a) \ LSV \ curves \ of the \ ALD \ Fe_3C_X/CC \ and \ bare \ CC. \ (b) \ Comparison \ of the \ LSV \ curves \ of the \ ALD \ Fe_3C_X/CC \ before \ and \ after 5000 \ cycles \ CV \ measurement.$