(Supplemental) Effect of copper surface condition on passivation characteristics for applications to area selective atomic layer deposition

Su Min Hwang et al.

Figure 1. *Ex-situ* XPS results following ALD–AlO_x process of different Cu samples at 120 °C showing (a) Al 2p–Cu 3p, (b) O 1s, and (c) S 2p narrow scans. In case of passivated as-is Cu (red) and passivation after CH₃COOH cleaning (blue), AlO_x was detected, whereas peak corresponding to Cu-S bonds were not detected. It implies that the Cu surfaces were passivation with poor adhesion, resulting in relatively low selectivity of ALD-AlOx. On the other hand, N₂H₄ treated Cu (green) gives better SAMs stability as well as less formation of AlO_x.

Figure 2. Differential IR spectra of the stability of SAMs-Cu samples against $ALD-AlO_x$ process at 120 °C. (a) In the case of passivated as-is Cu, positive peaks of (-CH₂) were only observed, indicating reorientation of SAMs parallel to the substrate. (b) On the other hand, the SAMs on the CH₃COOH-treated Cu sample were desorbed within ten cycles of the ALD process.

Figure 3. Differential IR spectrum of four different surface treatments on the Cu substrate. The *ex-situ* CH₃COOH cleaning process (red) shows removals of surface contaminants(e.g., $-CH_x$, -OH and $-CO_3$), reduction of Cu₂O, and formation of the copper acetate. Under the vacuum treatment (blue, $\sim 10^{-8}$ Torr), the copper acetate can be partially reduced to $-CH_x$ and -OH species. Most importantly, consecutive annealing process at 75 °C (green) can effectively modify the surface condition by removing residuals as well as the copper acetate.