

Figure 1. The proposed scheme for resistless e-beam/t-SPL lithography based on area-selective deposition of metal oxides hard-mask in the exposed areas of plasma halogenated amorphous carbon surface.

Figure 2. Selectivity of ALD TiO₂ (TiCl₄/H₂O) growth performed at 200°C on native SiO₂ (growth surface) over halogenated amorphous carbon (non-growth surface) calculated based on Ti signal recorded by Rutherford backscattering spectrometry. The values of TiO₂ thickness in the graph show the range of TiO₂ thickness variation when the deposition takes place on SiO₂ surface (GPC = 0.035 nm/cycle).

Figure 3. The sensitivity of chlorinated amorphous carbon to e-beam (20 kV) evaluated by AFM height profile. Measurements were done over 200 nm wide lines of ALD TiO₂ formed via e-beam scanning with different dose and successive processing with 500 cycles TiCl₄/H₂O followed by a defect etch treatment.

Figure 4. Thermal stability of halogenated amorphous carbon surface estimated via reduction of water contact angle and via associated growth of ALD TiO₂ upon 200 cycles of TiCl₄/H₂O applied.