In-situ-prepared protective seed layer by plasma ALD on graphene

Sarah Riazimehr¹, Ardeshir Estaki², Michael J. Powell¹, Martin Otto³, Gordon Rinke³, Zhenxing Wang³, Aileen O'Mahony¹, Max C. Lemme^{2,3}, Ravi S. Sundaram¹, and Harm Knoops¹

Oxford Instruments Plasma Technology UK, North End, Yatton, Bristol, BS494AP, United Kingdom
Chair of Electronic Devices, RWTH University, Otto-Blumenthal-Str. 2, 52074 Aachen, Germany
AMO GmbH, Otto-Blumenthal-Str. 25, 52074 Aachen, Germany

A side view schematic of Atomfab's plasma source [patent application PCT/GB2019/052763]. This remote plasma method was used for low damage deposition of both the protective AlN layer and the Al₂O₃ dielectric.

Process scheme of AlN seed-layer deposition and Al_2O_3 plasma ALD. The remote nitrogen plasma with a low plasma dose prevents etching of graphene while ensuring its physical/chemical modification. The thin layer of AlN provides an efficient protection of the graphene against the O_2 plasma during Al_2O_3 encapsulation.

Raman spectra and related metrics to indicate negligible damage when using the combination of protective seed layer and plasma ALD Al_2O_3 . Parameters I_D/I_G and FWHM (2D) for Gr/SiO₂/Si wafers before (black) and after Al_2O_3 deposition, with (blue) and without (red) AlN seed-layer. The sample protected by the AlN seed layer shows a negligible D-peak (no damage). The sample encapsulated by PEALD without AlN shows a significant increase in the I_D/I_G due to the induced damage to the graphene lattice by O_2 plasma exposure. A low FWHM(2D) for the wafer protected by the AlN seed layer corresponds to small strain variations.