Surface Dependence and Selectivity during Atomic Layer Deposition of Ge₂Sb₂Te₅

Jyoti Sinha,^{a,b} Leonidas Gallis,^{a,b} Jan-Willem Clerix,^{a,b} Laura Nyns,^b Annelies Delabie^{a,b}

^a Department of Chemistry, KU Leuven (University of Leuven), 3001 Leuven, Belgium ^b IMEC, 3001 Leuven, Belgium

The complex device architecture for Phase change Random Access Memory (PCRAM) has garnered attention towards Atomic Layer Deposition (ALD) for conformal or selective deposition. Ge₂Sb₂Te₅ is one of the promising phase change materials which has been used in PCRAM devices. Ge₂Sb₂Te₅ devices use either W or TiN as bottom electrode and SiO₂ or SiN as isolating material for confining heat within the cell [1]. The development of selective deposition processes for such device structures benefits from insight in the growth behaviour of Ge₂Sb₂Te₅ ALD. In this work, we therefore investigate the substrate dependence and selectivity of Ge₂Sb₂Te₅ ALD where TiN and SiO₂ were selected as substrates. GeCl₂. C₄H₈O₂, SbCl₃ and ((CH₃)₃Si)₂Te have been used as precursors to deposit Ge₂Sb₂Te₅ by alternating GeTe and Sb₂Te₃ subcycles. The growth-per-cycle of Ge₂Sb₂Te₅ ALD is 0.36 nm/cycle. Rutherford Backscattering Spectrometry (RBS) confirmed that Ge₂Sb₂Te₅ lavers of ~20 nm has the 2-2-5 composition. We observe linear ALD growth behaviour on both TiN and SiO₂ substrates, indicative of fast film formation. Further, both substrates were treated with dimethylamino-trimethylsilane (DMA-TMS) to alter the surface properties for evaluating the selectivity of Ge₂Sb₂Te₅ [2]. The DMA-TMS treatment on TiN shows minor effect on the surface composition and Ge₂Sb₂Te₅ ALD growth behaviour. In contrast, the DMA-TMS treatment on SiO₂ substantially inhibits the growth of Ge₂Sb₂Te₅ (figure 1) and no nanoparticles are observed using scanning electron microscopy (SEM) till 64 cycles, while a Ge₂Sb₂Te₅ layer of ~20 nm is obtained on DMA-TMS treated TiN. For higher number of cycles, nanoparticle analysis on DMA-TMS treated SiO₂ indicates that growth of Ge₂Sb₂Te₅ follows particle migration and coalescence (figure 2). Thus, the modified surface properties due to chemical treatment provides the selectivity of $Ge_2Sb_2Te_5$ towards SiO₂. This is confirmed by a demonstration of 20 nm of Ge₂Sb₂Te₅ ASD in nanoscale SiO₂/TiN line-space patterns.

Figure 1 Thickness of Ge₂Sb₂Te₅ during ALD cycle

Figure 2 SEM images of Ge₂Sb₂Te₅ deposited on DMATMS treated SiO₂

References:

- [1] K. Aryana *et al.*, "Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices," *Nature Communications*, vol. 12, no. 1, Dec. 2021, doi: 10.1038/s41467-020-20661-8.
- J. Soethoudt, S. Crahaij, T. Conard, and A. Delabie, "Impact of SiO2 surface composition on trimethylsilane passivation for area-selective deposition," *Journal of Materials Chemistry C*, vol. 7, no. 38, pp. 11911–11918, 2019, doi: 10.1039/c9tc04091a.