Simulated Conformality of ALD Growth Inside Lateral HAR Channels: Comparison Between a Diffusion–Reaction Model and a Ballistic Transport–Reaction Model

Jänis Järvilehto,¹ Jorge A. Velasco,¹ Jihong Yim,¹ Christine Gonsalves¹ and <u>Riikka L. Puurunen¹</u> ¹*Aalto University, School of Chemical Engineering, Department of Chemical and Metallurgical Engineering*

Figure 1. Simplified schematic depicting how the models treat particle transport inside the lateral high-aspect-ratio channel. The diffusion–reaction model [1,2] (upper) uses the diffusion equation to determine the partial pressure of the reactant, while the ballistic transport–reaction model [3,4] (lower) calculates reactant fluxes between discretization sites using a probability matrix based on the channel geometry.

Figure 2. Saturation profiles showing the evolution of the surface coverage with penetration into the channel in the diffusion–reaction model [1,2] (left) and the ballistic transport–reaction model [3,4] (right). The initial partial pressure of the reactant was varied as indicated in the legend, while the other simulation parameters were as follows: T = 573.15 K, $p_1 = 0$ Pa, $M_A = 0.1$ kg/mol, $M_1 = 0.028$ kg/mol, $M_{film} = 0.05$ kg/mol, H = 0.5 µm, W = 0.01 m, L = 500 µm, $t_{end} = 1$ s, c = 0.001, $P_d = 0.0001$, q = 4 nm⁻², $s_0 = 0.25$ nm², $\rho = 3500$ kg/m³, $b_A = 1$, $b_{film} = 1$, $d_A = 0.6$ nm, $d_1 = 0.4$ nm, $\Phi_p = 2$ and $\Phi_s = 4$.

References

[1] M. Ylilammi et al., J. Appl. Phys. 123 (2018) 205301.

[2] J. Yim and E. Verkama et al., Phys. Chem. Chem. Phys. 24 (2022) 8645-8660.

- [3] A. Yanguas-Gil and J.W. Elam, Theor. Chem. Acc. 133 (2014) 1465.
- [4] A. Yanguas-Gil and J.W. Elam, (2013) https://github.com/aldsim/machball, accessed Feb 13 2023.