


Fig. 1. Adsorption behavior of $\text{Mo}(\text{CO})_6$ on Mo_2N surfaces with and without exposed N.

Top: Mo_2N surface without exposed N atoms. Bottom: Mo_2N surface with exposed N atoms. The optimized/MD snapshots show a clear termination dependence: on the N-free surface, $\text{Mo}(\text{CO})_6$ readily undergoes dissociative adsorption, creating surface-bound Mo species that can initiate film growth. In contrast, when surface N atoms are exposed, $\text{Mo}(\text{CO})_6$ adsorption is strongly suppressed and dissociation is not observed under the same conditions, indicating that N-rich termination passivates the reactive sites and inhibits precursor uptake.

Fig. 2. Suppression of GPC by adding NH_3 into the $\text{Mo}(\text{CO})_6$ + purge cycle.

Growth per cycle (GPC) is plotted as a function of $\text{Mo}(\text{CO})_6$ dose time. Within the examined time window, the $\text{Mo}(\text{CO})_6$ -only sequence ($\text{Mo}(\text{CO})_6$ + purge) does not exhibit a clear saturation behavior that would indicate an ALD half-cycle. When NH_3 is introduced (alternating $\text{Mo}(\text{CO})_6/\text{NH}_3$ exposure), the GPC is consistently reduced by nearly one order of magnitude across the same dose-time range, demonstrating that NH_3 effectively suppresses $\text{Mo}(\text{CO})_6$ -driven growth, likely via surface nitridation and reduced precursor uptake.