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8:20am 2D+EM+MN+NS-FrM-1 Interfacial Strength and Surface Damage 
Characteristics of Two-dimensional h-BN, MoS2 and Graphene, Frank 
DelRio, National Institute of Standards and Technology; B Tran Khac, K 
Chung, University of Ulsan, South Korea 

Two-dimensional (2D) materials such as single- and multi-layer hexagonal 
boron nitride (h-BN), molybdenum disulfide (MoS2), and graphene have 

attracted intensive interest due to their remarkable material properties. In 
this study, the film-to-substrate interfacial strengths and surface damage 

characteristics of atomically-thin h-BN, MoS2 and graphene were 
systematically investigated via atomic force microscopy (AFM)-based 

progressive-force and constant-force scratch tests and Raman 
spectroscopy. The film-to-substrate interfacial strengths of these 

atomically-thin films were assessed based on their critical forces (i.e., 
normal force where the film was delaminated from the substrate) as 

determined from progressive-force scratch tests. The evolution of surface 
damage with respect to normal force was further investigated using 

constant-force tests. The results suggested three different steps in the 
evolution of surface damage. At relatively low normal force, no significant 

change in topography and friction force was observed, which points to 
elastic deformation in the scratched area. As normal force increased, the 
formation of defects in the film and plastic deformation in the substrate 

were noted. At this stage, although the films have not yet failed, their 
topography, friction force, crystalline quality, and mechanical strengths 

were affected, which notably degraded their tribological performance. At 
normal forces above the critical force, delamination of the film from the 

substrate occurred. The compressive strain-induced buckling in front of the 
AFM tip was the primary source of mechanical instability. As the 

compressive strain increased, the atomic bonds were compressed, and 
eventually ruptured. As the number of layers increased, the tribological 
performance of h-BN, MoS2, and graphene were found to significantly 

improve due to an increase in the interfacial strengths and a decrease in 
the surface damage and friction force. In all, the findings on the distinctive 
surface damage characteristics and general failure mechanisms are useful 
for the design of reliable nanoscale protective and solid-lubricant coating 

layers based on these 2D materials. 

8:40am 2D+EM+MN+NS-FrM-2 Optical and Optoelectronic Properties in 
2D Homo- and Hetero-junctions, Juan Xia, Nanyang Technological 
University, Singapore, China 

It is well-known that the optical and electronic structures of two-
dimensional transition metal dichalcogenide (2D TMD) materials and 
perovskites often show very strong layer-dependent properties1. It is less 
well-known however is that the properties can also be tuned by stacking 
order, which allows us to build electro and optical devices with the same 
material and the same thickness. Detailed understanding of the inter-layer 
interaction will help greatly in tailoring the properties of 2D TMD materials 
for applications, e.g. in p-n junction, transistors, solar cells and LEDs. 
Raman/Photoluminescence (PL) spectroscopy and imaging have been 
extensively used in the study of nano-materials and nano-devices. They 
provide critical information for the characterization of the materials such as 
electronic structure, optical property, phonon structure, defects, doping 
and stacking sequence2. 

In this talk, we use Raman and PL techniques and electric measurements, 
as well as simulation to study TMD samples (Figure 1). The Raman and PL 
spectra also show clear correlation with layer-thickness and stacking 
sequence. Electrical experiments and ab initio calculations reveal that 
difference in the electronic structures mainly arises from competition 
between spin-orbit coupling and interlayer coupling in different structural 
configurations3. Similar phenomena could also be found in TMD 
heterostructures. 

[1] Tan, P. H.; Han, W. P.; Zhao, W. J.; Wu, Z. H.; Chang, K.; Wang, H.; Wang, 
Y. F.; Bonini, N.; Marzari, N.; Pugno, N.; Savini, G.; Lombardo, A.; Ferrari, A. 

C. Nat Mater 2012, 11, (4), 294-300. 

[2] Yan, J.; Xia, J.; Wang, X.; Liu, L.; Kuo, J. L.; Tay, B. K.; Chen, S.; Zhou, W.; 
Liu, Z.; Shen, Z. X. Nano letters 2015, 15, (12), 8155-61. 

[3] Xia, J.; Yan, J.; Shen, Z. X. FlatChem 2017, 4, 1-19. 

9:00am 2D+EM+MN+NS-FrM-3 Sequential Edge-epitaxy: Towards Two-
dimensional Multi-junctions Heterostructures and Superlattices, 
Humberto Rodriguez Gutierrez, University of South Florida INVITED 

Atomically thin layers are known as two-dimensional (2D) materials and 
have attracted a growing attention due to their great potential as building 
blocks for a future generation of low-power and flexible 2D optoelectronic 
devices. Similar to the well-established 3D electronics, the development of 
functional 2D devices will depend on our ability to fabricate 
heterostructures and junctions where the optical and electronic properties 
of different compounds are brought together to create new functionalities. 
Vertical heterostructures can be produced by selective van der Waals 
stacking of different monolayers with distinct chemical composition. 
However, in-plane lateral heterostructures, where different materials are 
combined within a single 2D layer, have proven to be more challenging. 
During the formation of the hetero-junction, it is important to minimize the 
incorporation of undesired impurities and the formation of crystal defects 
at the junction that will impact the functionality of the 2D device. When 
fabricating periodic structures it is equally important to develop the ability 
to control the domain size of each material. In this talk, we will review 
different techniques that have been used to create 2D lateral 
heterostructures of transition metal dichalcogenide compounds. Emphasis 
will be made in our recently reported one-pot synthesis approach, using a 
single heterogeneous solid source, for the continuous fabrication of lateral 
multi-junction heterostructures of TMD monolayers. In this method, the 
heterojunctions are sequentially created by only changing the composition 
of the reactive gas environment in the presence of water vapor. This allows 
to selectively control the water-induced oxidation and volatilization of each 
transition metal precursors, as well as its nucleation on the substrate, 
leading to sequential edge-epitaxy of distinct TMDs. This simple method 
have proven to be effective for continuous growth of TMD-based multi-
junction lateral heterostructures, including selenides, sulfides and ternary 
alloys. Basic devices with field effect transistor configuration were 
fabricated to study the electrical behavior of these heterojunctions, their 
diode-like response, photo-response as a function of laser power as well as 
photovoltaic behavior of the heterojunctions will be discussed. 

9:40am 2D+EM+MN+NS-FrM-5 Interpretation of π-band Replicas 
Observed for Mono- and Multi-layer Graphene Grown on 4H SiC(0001), T 
Balasubramanian, M Leandersson, J Adell, C Polley, Lund University, 
Sweden; Leif Johansson, R Yakimova, C Jacobi, Linkoping University, 
Sweden 

Graphene has made a major impact on physics due to its large variety of 
properties. The peculiar band structure of free standing graphene, showing 
linear dispersion and a Dirac point at the Fermi energy, makes it attractive 
for various applications. Large-scale epitaxial films have been grown on Si-
terminated SiC substrates. However, the electronic structure is influenced 
when the graphene is laid upon a substrate whose lattice symmetry does 
not match that of graphene [1,2]. Six replicas oriented around each Dirac 
cone were observed already in the first ARPES experiments [1] of graphene 
grown on SiC(0001), and later reported [2] to have around 40 times lower 
intensity than a main Dirac cone. They were found to have the same 
relative separation and orientation as the rosette spots observed around 
the 0;th and 1x1 SiC and Graphene spots in the low energy electron 
diffraction (LEED) pattern and were explained [2] to have similar origin, i.e. 
to originate from photoelectron diffraction.  

In two later ARPES investigations [3,4] additional weaker replicas were 
reported to exist along the Γ-K direction in the Brillouin zone of Graphene. 
One of them showed the existence [3] only for 1 ML but not 2 ML samples 
while the other reported [4] the existence in both 1 ML and 3 ML graphene 

samples. The origin of these replicas were in both cases attributed to a 
modulation of the ionic potential in the graphene layer/layers induced by 
the charge modulation of the carbon layer at the interface, i.e. the carbon 
buffer layer. Thus to an initial state effect instead of the earlier proposed 

final state effect. In both those experiments un-polarized HeI radiation was 
utilized, so the symmetry of the π-band replicas was not determined. We 
therefore investigated monolayer and multilayer graphene samples using 

linearly polarized synchrotron radiation, which allowed us to exploit the so 
called dark corridor [5] to directly determine the symmetry of the replica 

cones. Our ARPES data therefore clearly show the origin of these additional 
replicas observed using He-I radiation and moreover reveal the existence of 
some weaker replicas not earlier reported. An interpretation of our ARPES 

data in terms of final state photoelectron diffraction effects is shown to 
account for the location and symmetry of the π-band replicas observed. 
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10:00am 2D+EM+MN+NS-FrM-6 Effect of SiC(0001) Substrate Morphology 
and Termination on Multilayer Hexagonal Boron Nitride Epitaxy by 
Plasma-Enhanced CBE, Daniel J. Pennachio, N Wilson, E Young, A 
McFadden, T Brown-Heft, University of California at Santa Barbara; K 
Daniels, R Myers-Ward, K Gaskill, C Eddy, Jr., U.S. Naval Research 
Laboratory; C Palmstrøm, University of California at Santa Barbara 

Despite the prevalent use of hexagonal boron nitride (hBN) in 2D devices as 
a gate dielectric, tunnel barrier, or substrate, the quality of hBN thin films 

are typically lacking relative to flakes exfoliated from bulk crystals. To 
address the challenges of hBN epitaxy, this work studies the growth of hBN 

on single-crystal epitaxial graphene on SiC(0001) via plasma-enhanced 
chemical beam epitaxy (PE-CBE). As PE-CBE is conducted in an ultra-high 

vacuum environment, hBN nucleation, composition, and morphology were 
able to be examined using a combination of in-situ, in-vacuo, and ex-situ 

characterization techniques to gain insight into the formation of high-
quality hBN films and hBN/graphene heterostructures. 

It was found that utilization of high growth temperature (>1400°C) and 
nitrogen plasma flux (5×10-6 Torr background pressure) resulted in 
improved multilayer hBN film morphology over lower temperature 

(1300°C) depositions and CBE growths without nitrogen plasma flux. PE-
CBE also produced more stoichiometric films than CBE without plasma at 

temperatures above 1400°C, as determined by in-vacuo X-ray 
photoelectron spectroscopy (XPS). In-situ reflection high energy electron 

diffraction (RHEED) showed streaky diffraction patterns persisting 
throughout several nanometers of PE-CBE hBN growth, indicative of a 

smooth, epitaxial film. Crystallinity and epitaxial arrangement of hBN nuclei 
were examined by in-vacuo and ex-situ scanning probe microscopy (SPM). 

Scanning probe spectroscopy provided information on the electrical 
properties of the hBN films relative to bulk values. 

The epitaxial alignment of the hBN/graphene/SiC(0001) heterostructure 
was studied by RHEED and by comparing nuclei edge alignment, as 

measured with SPM or scanning electron microscopy, to the substrate 
lattice orientation. It was found that the rotational alignment of the hBN 

nuclei depended on the substrate surface morphology. Nuclei on the 
(6√3×6√3)R30° SiC surface reconstruction, a graphene-like buffer layer, 

aligned directly to the buffer layer, while hBN nuclei on 4° off-cut epitaxial 
graphene substrates showed preferential alignment to substrate 
macrosteps rather than the graphene lattice. These ~25nm high 

macrosteps were then examined by cross-sectional transmission electron 
microscopy (TEM), which showed that the epitaxial graphene and hBN 

conformally blanketed the macrostep facets despite the macrostep’s effect 
on nuclei orientation. The macrostep-directed nucleation outlined in this 

work provides a potential route to controlling the hBN/graphene rotational 
alignment during van der Waals epitaxy, an important variable for 

modulating electronic properties in this 2D system. 

10:20am 2D+EM+MN+NS-FrM-7 Nanoelectromechanical Drumhead 
Resonators from 2D Material Bimorphs, Sun Phil Kim, J Yu, E Ertekin, A van 
der Zande, University of Illinois at Urbana-Champaign 

Atomic membranes of monolayer 2D materials represent the ultimate limit 
in size of nanoelectromechanical systems. Yet, new properties and new 

functionality emerge by looking at the interface between layers in 
heterostructures of 2D materials. In this talk, we demonstrate the 

integration of 2D heterostructures as nanoelectromechanical systems and 
explore the competition between the mechanics of the ultrathin 

membrane and the incommensurate van der Waals interface. We fabricate 
electrically contacted, 5-6 µm circular drumheads of suspended 

heterostructure membranes of monolayer graphene on monolayer 
molybdenum disulfide (MoS2), which we call a 2D bimorph. We 

characterize the mechanical resonance through electrostatic actuation and 
laser interferometry detection. The 2D bimorphs have resonance 

frequencies of 5-20 MHz and quality factors of 50-700, comparable to 
resonators from monolayer or few layer 2D materials. The frequencies and 
eigenmode shape of the higher harmonics display split degenerate modes 

showing that the 2D bimorphs behave as membranes with asymmetric 
tension. The devices display dynamic ranges of 44 dB, but there is a strong 
dependence of the dissipation on the drive. Under electrostatic frequency 

tuning, devices display small tuning of ~ 20% compared with graphene 

resonators > 100%. In addition, the tuning shows a recoverable kink that 
deviates from the tensioned membrane model for atomic membranes, and 
corresponds with a changing in stress of 0.014 N/m. One model that would 

account for this tuning behavior is the onset of interlayer slip in the 
heterostructure, allowing the tension in the membrane to relax. Using 

density functional theory simulations, we find that the change in stress at 
the kink is much larger than the energy barrier for interlayer slip of 0.0001 

N/m in a 2D heterostructure, but smaller than the energy barrier for an 
aligned bilayer of 0.034 N/m, suggesting local pinning effect at ripples or 

folds in the heterostructure. Finally, we observe an asymmetry in tuning of 
the full width half max that does not exist in monolayer materials. These 
findings demonstrate a new class of NEMS from 2D heterostructures and 

unravel the complex interaction and impact of membrane morphology, and 
interlayer adhesion and slip on the mechanics of incommensurate van der 

Waals interfaces. 

10:40am 2D+EM+MN+NS-FrM-8 Atomically-precise Graphene Etch Masks 
for 3D Integrated Systems from 2D Material Heterostructures, Jangyup 
Son, University of Illinois at Urbana-Champaign; A van der Zande, 
University of Illinois at Urbana Champaign 

Atomically-precise fabrication methods are critical for the development of 
next-generation technologies in which electronic, photonic, and 

mechanical devices approach the atomic scale. In no area is this challenge 
more apparent than in nanoelectronics based on two-dimensional (2D) 

heterostructures, in which van der Waals (vdW) materials, such as 
graphene, hexagonal boron nitride (hBN), and transition metal 

dichalcogenides (TMDs), are integrated stacked to form functional 
electronic devices with nanometer thicknesses. A major challenge in the 

assembly of vdW heterostructure devices is the difficulty of patterning and 
individually connecting each molecular layer. 

In this presentation, we demonstrate the use of graphene as a highly 
selective, atomically-thin etch mask and etch stop in van der Waals 

heterostructures. we also show the advantages of graphene etch masks 
(GEM) through advanced device demonstrations. We demonstrate that 
most inorganic 2D materials, such as hBN, TMDs, and black phosphorus 
(BP), are efficiently etched away by exposing those to XeF2 gas at room 

temperature. In contrast, instead of getting etched, atomically-thin 
monolayer graphene is chemically functionalized (i.e. flurographene (FG)) 
under XeF2 exposure due to the formation of sp3 bonds by the addition of 

fluorine atoms onto the graphene surface. Based on this, we used 
exfoliated (and CVD) graphene layer as etch mask for patterning other 2D 

layers in micro (and macro) scale vdW heterostructures. We also 
demonstrate the use of this selective etching and GEM in mainly two 

different applications: 3D-integrated heterostructure devices with 
interlayer vias and suspended graphene mechanical resonators. First, we 

fabricate an electrical device having buried contacts in a 2D material 
heterostructure. Holes were etched through the top layer of hBN in an 

encapsulated BN-G-BN heterostructure to locally expose the buried 
graphene layer and contacts were fabricated by evaporating metal 

electrodes on the exposed graphene regions. The resulting encapsulated 
graphene device shows a low contact resistance of ~ 80 ohm∙mm (n = 
−2×1012 cm2) at room temperature, leading to high carrier mobility of ~ 

140,000 cm2V-1s-1, which is comparable to the electrical properties of state-
of-the-art edge contacted graphene devices. Second, we fabricate a 

suspended graphene membrane by vapor phase etching of a BP thin film 
supporting graphene. We show that the graphene membrane behaves as a 
nanomechanical resonator with a frequency of 5.24 MHz and quality factor 

of ~255, comparable to graphene NEMS prepared on conventional 
substrates. 

11:00am 2D+EM+MN+NS-FrM-9 Insights into the O Atom Adsorption and 
O2 Dissociation on Halogenated Graphene Surfaces, Reynaldo Geronia, 
University of the Philippines Diliman; A Padama, University of the 
Philippines Los Baños, Philippines; J Ocon, University of the Philippines 
Diliman, Philippines; P Chuang, University of California, Merced 

Oxygen reduction reaction (ORR) usually depends on precious metal-based 
catalysts like platinum and its alloys to facilitate its sluggish kinetics. The 

high cost of these materials however limits the employment of ORR-based 
technologies in commercial applications like fuel cells and metal-air 

batteries. Interestingly, recent works have demonstrated that doped 
metal-free carbon catalysts, such as graphene-based materials, can 

facilitate adsorption of ORR intermediate species [1]. This motivates us to 
investigate the interaction of oxygen atom and oxygen molecule on 

halogenated graphene systems. 
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In this work, we performed density functional theory (DFT) based 
calculations to investigate the stability of coplanar and non-coplanar 

halogen (X = F, Cl, Br, I) doped monovacant graphene systems. The stability 
of halogenated-graphene is strongly influenced by the size of halogen 

dopant as well as the geometry of the vacancy [2]. The calculated 
adsorption properties of atomic [3] and molecular oxygen on halogenated 

graphene systems, on the other hand, signifies the possibility of O2 
dissociation. We note that the dissociation of the molecule results to the 

distortion of the geometric structure of the substrate. This leads mostly to 
the formation of dangling and bridging C-O bonds along the edge of the 

graphene monovacancy which could have facilitated the dissociation of the 
molecule. Depending on the halogen, adsorption of oxygen can strengthen 
or weaken existing C-X bonds, due to differences between the abilities of 

oxygen and halogens to induce charge transfer and to participate in π 
bonding with carbon. These findings are expected to increase our 

understanding of novel graphene-based materials, which are currently 
being developed with the aim of reducing the use of noble metals as 

catalysts in fuel cells. 
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