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8:00am 2D+EM+MI+NS+QS+SS-ThM-1 Interfacial Engineering of 
Chemically Reactive Two-Dimensional Materials, Mark Hersam, 
Northwestern University INVITED 

Following the success of ambient-stable two-dimensional (2D) materials 
such as graphene and hexagonal boron nitride, new classes of chemically 
reactive layered solids are being explored since their unique properties 
hold promise for improved device performance [1]. For example, 
chemically reactive 2D semiconductors (e.g., black phosphorus (BP) and 
indium selenide (InSe)) have shown enhanced field-effect mobilities under 
controlled conditions that minimize ambient degradation [2]. In addition, 
2D boron (i.e., borophene) is an anisotropic metal with a diverse range of 
theoretically predicted phenomena including confined plasmons, charge 
density waves, and superconductivity [3], although its high chemical 
reactivity has limited experimental studies to inert ultrahigh vacuum 
conditions [4-7]. Therefore, to fully study and exploit the vast majority of 
2D materials, methods for mitigating or exploiting their relatively high 
chemical reactivity are required [8]. In particular, covalent organic 
functionalization of BP minimizes ambient degradation, provides charge 
transfer doping, and enhances field-effect mobility [9]. In contrast, 
noncovalent organic functionalization of borophene leads to the 
spontaneous formation of electronically abrupt lateral organic-borophene 
heterostructures [10]. By combining organic and inorganic encapsulation 
strategies, even highly chemically reactive 2D materials (e.g., InSe) can be 
studied and utilized in ambient conditions [11]. 
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8:40am 2D+EM+MI+NS+QS+SS-ThM-3 Effects of Mn Doping on the 
Surface Electronic Band Structure and Bulk Magnetic Properties of ZnS 
and CdS Quantum Dot Thin Films, Thilini K. Ekanayaka1, G Gurung, 
University of Nebraska-Lincoln; G Rimal, Rutgers University; S Horoz, Siirt 
University, Turkey; J Tang, T Chien, University of Wyoming; T Paudel, A 
Yost, University of Nebraska-Lincoln 

Semiconducting quantum dots (QDs) are desirable for solar cells due to the 
ability to tune the band gap by changing the QD size without changing the 
underlying material or synthesis technique. Doping QDs with a transition 
metal is one way of further tailoring the electronic band structure and 
magnetic properties of QDs in order to improve overall device 
performance. Understanding the mechanisms causing the change in the 
electronic band structure and magnetic properties due to transition metal 
doping is important to device-by-design schemes. In this study, we 
measure the effects of Mn dopants on the surface electronic band 
structure of ZnS and CdS QDs using scanning tunneling 
microscopy/spectroscopy and photoemission spectroscopy. In both the ZnS 
and CdS systems, a decrease in band gap upon introduction of Mn is 
observed. Additionally, a rigid band shift was observed in ZnS upon Mn 
doping It is argued, using X-ray photoemission spectroscopy, that the rigid 
band shift is due to a hole-doping mechanism caused by the formation of 
Zn vacancies accompanied by a Mn3+oxidation state which leads to the 
reduction in total S vacancies as compared to the undoped ZnS system. No 
band shift was observed in CdS upon Mn doping, but a strong sp-d 
hybridization takes place which results in a significant band gap reduction. 
Furthermore, induced midgap states originating from the Mn dopant 
appear in the surface electronic band structure of Mn: CdS. Measurements 
of the magnetization of Mn doped and undoped ZnS and CdS confirms the 
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presence of d0 ferromagnetism. The magnetization is reduced and the 
coercive field is increased post Mn doping which suggests the anti-
ferromagnetic alignment of Mn dopant atoms. Density Functional Theory 
calculations support the Mn anti-ferromagnetic alignment hypothesis and a 
ground state with Mn in the 3+ valence. This study provides important 
information on the role of dopants and vacancies in dilute magnetic 
semiconductor quantum dot materials for applications in photovoltaics and 
spintronics. 

9:00am 2D+EM+MI+NS+QS+SS-ThM-4 Interaction of Molecular O2 with 
Organolead Halide Nanorods by Single-Particle Fluorescence Microscopy, 
Juvinch Vicente, J Chen, Ohio University 

The photoluminescence (PL) of organolead halide perovskites (OHPs) is 
sensitive to its surface conditions, especially surface defect states, making 
the PL of small OHP crystals an effective way to report their surface states. 
At the ensemble level, when averaging a lot of nanocrystals, the 
photoexcitation of OHP nanorods under inert nitrogen (N2) atmosphere 
leads to PL decline, while subsequent exposure to oxygen (O2) results to 
reversible PL recovery. At the single-particle level, individual OHP nanorods 
photoblinks, whose probability is dependent on both the excitation 
intensity and the O2 concentration. Combining the two sets of information, 
we are able to quantitatively evaluate the interaction between a single 
surface defect and a single O2 molecule using a kinetic model. This model 
provides fundamental insights that could help reconcile the contradicting 
views on the interactions of molecular O2 with OHP materials and help 
design a suitable OHP interface for a variety of applications in photovoltaics 
and optoelectronics. 

9:20am 2D+EM+MI+NS+QS+SS-ThM-5 Complementary Growth of 2D 
Transition Metal Dichalcogenide Semiconductors on Metal Oxide 
Interfaces, T Wickramasinghe, Gregory Jensen, R Thorat, Nanoscale and 
Quantum Phenomena Institute; S Aleithan, Nanoscale and Quantum 
Phenomena Institute, Saudi Arabia; S Khadka, E Stinaff, Nanoscale and 
Quantum Phenomena Institute 

A chemical vapor deposition (CVD) growth model will be presented for a 
technique resulting in naturally formed 2D transition metal dichalcogenide 
(TMD) based metal-oxide-semiconductor structures. The process is based 
on a standard CVD reaction involving a chalcogen and transition metal 
oxide-based precursor. Here however, a thin metal oxide layer, formed on 
lithographically defined regions of a pure bulk transition metal, serves as 
the precursor. X-ray diffraction and cross -sectional SEM studies show 
insight into the type and thickness of the metal oxide created during 
optimal growth conditions. The chalcogen reacts with the metal oxide, 
forming TMD material which migrates outward along the substrate, leading 
to lateral growth of highly-crystalline, mono-to-few layer, films. In addition 
to displaying strong luminescence, monolayer Raman signatures, and 
relatively large crystal domains, the material grows deterministically and 
selectively over large regions and remains connected to the bulk metallic 
patterns, offering a scalable path for producing as-grown two-dimensional 
materials-based devices. 

9:40am 2D+EM+MI+NS+QS+SS-ThM-6 Kagome-type Lattice Instability and 
Insulator-metal Transition in an Alkali-doped Mott Insulator on Si(111), 
Tyler Smith, H Weitering, University of Tennessee Knoxville 

The 1/3 ML monolayer (ML) ‘alpha phase’ of Sn on Si(111) is a remarkable 
platform for the study of strong correlations in a spin ½ triangular adatom 
lattice. In this work, we employ an adatom doping scheme by depositing 
potassium onto the triangular Sn lattice. The K-atoms destabilize the parent 
Mott insulating phase and produce a charge-ordered insulator, revealing a 
rare Kagome lattice at the surface. Scanning Tunneling Microscopy and 
Spectroscopy reveal a phase transition from an insulating kagome lattice to 
a metallic triangular lattice at about 200 K. DFT band structure calculations 
for this kagome system [J. Ortega et al., unpublished] reveal the presence 
of a flat-band just below the Fermi level, making this novel system a 
compelling platform for hole-doping studies of magnetic and/or 
superconducting instabilities. 

11:00am 2D+EM+MI+NS+QS+SS-ThM-10 Chemical Migration and Dipole 
Formation at TMD/TI Interfaces, Brenton Noesges, T Zhu, The Ohio State 
University; D O'Hara, University of California, Riverside; R Kawakami, L 
Brillson, The Ohio State University 

Proximity effects at the interface between two materials can induce 
physical properties not present in either material alone. Topological 
insulators (TIs) such as Bi2Se3 with non-trivial surface states are sensitive to 
interface proximity effects where overlayers and adsorbates can act as a 
dopant source, chemically interact with the TI surface, or couple across the 
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TI surface states leading to novel quantum phases. Transition metal 
dichalcogenides (TMDs), a class of 2D van der Waals materials, are a 
promising candidate to control this interface given the shared general 
hexagonal symmetry and wide range of TMD properties. However, the 
interface between TMDs and Bi2Se3 can be more complex than the ideal 
van der Waals interface. Chemical species exchange like metal cation 
exchange and selenium migration from substrate to growing film can 
impact the structure and properties of either layer. Self-assembly 
mechanisms have also been observed where complete metal monolayers 
form inside the Bi2Se3 quintuple layer [1]. We used x-ray photoelectron 
spectroscopy (XPS) connected in vacuo via UHV suitcase to a molecular 
beam epitaxy (MBE) system to investigate chemical interaction at the 
interface between selenide TMDs and Bi2Se3. Air-free transferring is crucial 
to minimize contamination at the interface and prevent oxidation in the 
air-sensitive TMDs. We compare the effects of ultrathin pure Mn metal 
overlayers and monolayer MnSex on Bi2Se3 to pristine Bi2Se3. In the case of 
pure Mn metal on Bi2Se3, Bi core levels exhibit a 1.7 eV shift toward lower 
binding energies while the Mn core levels also show signs of Mn-Se 
bonding. These core level changes indicate that, in the absence of excess Se 
during growth, Mn pulls Se from the substrate leaving behind Bi2 bilayers 
near the surface. Depositing a monolayer of MnSex produces very different 
results than the pure metal case. Bi2Se3 core levels measured below the 
monolayer MnSex film exhibit a rigid 0.8 eV chemical shift toward higher 
binding energies indicative of surface/interface dipole formation. The 
presence of this dipole is likely due to growth of primarily α-MnSe instead 
of the 1T-MnSe2 2D phase [2]. Scanning tunneling microscopy (STM) height 
maps and spectroscopy data provide further evidence of majority α-MnSe 
formation. XPS core level analysis combined with controlled depositions, 
air-free transfers and surface analysis can provide a consistent explanation 
of chemical diffusion and dipole formation at a TMD/TI interface. This work 
is supported by NSF MRSEC under award number DMR-1420451. 

[1] J. A. Hagmann et al., New J. Phys. 19, 085002 (2017). 
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11:20am 2D+EM+MI+NS+QS+SS-ThM-11 Atomically Resolved Electronic 
Properties of Defects in the in-plane Anisotropic Lattice of ReS2, Adina 
Luican-Mayer, University of Ottawa, Canada 

Among the layered transition metal dichalcogenides, the compounds that 
exhibit in-plane anisotropy are of particular interest as they offer an 
additional tuning knob for their novel properties. In this talk, we present 
experimental evidence of the lattice structure and properties of 
semiconducting ReS2 by using scanning tunneling microscopy and 
spectroscopy (STM/STS). We demonstrate that rhenium atoms form 
diamond-shaped clusters, organized in disjointed chains and characterize 
the semiconducting electronic band gap by STS. When imaging the surface 
of ReS2, we encounter “bright” or “dark” regions indicating the presence of 
charged defects that will electrostatically interact with their environment. 
By spatially mapping the local density of states around these defects, we 
explore their origin and electrostatic nature. Experimental results are 
compared with ab-initio theory. 

11:40am 2D+EM+MI+NS+QS+SS-ThM-12 Charge Diminishing at the Si-SiO2 
System and its Influence on the Interface Properties, Daniel Kropman, V 
Seeman, Tartu University, Estonia; A Medvids, P Onufrievs, Riga Technical 
University, Latvia 

The fact that a positive charge formation occurs in SiO2 film during the 
process of Si thermal oxidation is already known, with the formation being 
dependent upon the oxidation conditions which involve temperature, time, 
and ambient conditions. This is connected by oxygen vacancies in the SiO2 
film and unsaturated Si3• bonds at the interface. Until now this process has 
not been studied in depth at an atomic level. The purpose of the present 
work is to investigate the charge formation in the Si-SiO2 system and its 
diminishing by means of the appropriate choice of oxidation conditions via 
EPR spectroscopy, IR spectroscopy, CV curves, TEM, and deflection 
measurements. Laser irradiation and ultrasonic treatment were used for 
the modification of interface properties. It has been established that, at an 
oxidation temperature that is within the range of 11250C-11300C in SiO2 
film with a thickness of 0.2-0.3μ at the interface, there appears a low 
positive or negative charge which is connected with negatively charged 
acceptors that are formed by Si vacancies, and the positive charge in the 
SiO2 is compensated. The results that were obtained coincide with the 
point defects generation kinetic model in the Si-SiO2 system which was 
proposed in [1] and was confirmed experimentally [2]. Integral circuit 
technology conditions that allow the interface charge to diminish were 
introduced by the semiconductor plant, ALFA (Riga, Latvia) [3]. We 

supposed that these results, which were obtained during long term 
collaboration between Estonia and Latvia, constituted a discovery that had 
been achieved by Si-SiO2 system investigation no less than thirty years ago: 
the discovery of the quantum Hall effect on the Si-SiO2 structure [4]. 
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12:00pm 2D+EM+MI+NS+QS+SS-ThM-13 Size-independent “Squeezed” 
Shape of Metal Clusters Embedded Beneath Layered Materials, A Lii-
Rosales, Ames Laboratory and Iowa State University; S Julien, K Wan, 
Northeastern University; Y Han, Ames Laboratory and Iowa State 
University; K Lai, Iowa State University; M Tringides, J Evans, Patricia A. 
Thiel, Ames Laboratory and Iowa State University 

We have developed a continuum elasticity model for metals embedded 
beneath the surfaces of layered materials. The model predicts that the 
equilibrated cluster shape is invariant with size, manifest both by constant 
side slope and by constant aspect ratio (width:height ratio). This prediction 
is rationalized by dimensional analysis of the relevant energetic 
contributions. The model is consistent with experimental data for Cu and 
Fe clusters embedded in graphite, especially in the limit of large clusters. 
For comparison, we have performed a Winterbottom analysis of the 
equilibrium shape of an uncovered Cu cluster supported on top of graphite. 
The aspect ratio of the embedded cluster is about an order of magnitude 
higher than that of the supported cluster. Analysis of key energetics 
indicates that this is due to the strain energy (resistance to deformation) of 
the top graphene membrane, which effectively squeezes the metal cluster 
and forces it to adopt a relatively low, flattened shape. These insights may 
be useful for developing components such as metallic heat sinks or 
electrodes in electronic devices that use two-dimensional or layered 
materials. 
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