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8:00am 2D+EM+MI+MN+NS+QS-WeM-1 A Safari Through Thousands of 
Layered Materials Guided by Data Science Techniques, Evan Reed, G 
Cheon, Stanford University INVITED 

We have utilized data mining approaches to elucidate over 1000 2D 
materials and several hundred 3D materials consisting of van der Waals 
bonded 1D subcomponents, or molecular wires. We find that hundreds of 
these 2D materials have the potential to exhibit observable piezoelectric 
effects, representing a new class of piezoelectrics. A further class of layered 
materials consists of naturally occurring vertical hetero structures, i.e. . 
bulk crystals that consist of stacks of chemically dissimilar van der Waals 
bonded layers like a 2-D super lattice. We further combine this data set 
with physics-based machine learning to discover the chemical composition 
of an additional 1000 materials that are likely to exhibit layered and two-
dimensional phases but have yet to be synthesized. This includes two 
materials our calculations indicate can exist in distinct structures with 
different band gaps, expanding the short list of two-dimensional phase 
change materials. We find our model performs five times better than 
practitioners in the field at identifying layered materials and is comparable 
or better than professional solid-state chemists. Finally, we find that semi-
supervised learning can offer benefits for materials design where labels for 
some of the materials are unknown. 

8:40am 2D+EM+MI+MN+NS+QS-WeM-3 2D Ferroelectric Semiconductor 
α-In2Se3 for Non-Volatile Memory Applications, M Si, Peide Ye, Purdue 
University 

α-In2Se3 is a novel two-dimensional (2D) ferroelectric semiconductor. It has 
a bandgap of ~1.39 eV, room temperature ferroelectricity, the ability to 
maintain ferroelectricity down to a few atomic layers and the feasibility for 
large-area growth. Based on the ferroelectric and semiconducting nature of 
the material, a ferroelectric semiconductor field-effect transistor (FeS-FET) 
was proposed and experimentally demonstrated [1]. In the FeS-FET, a 
ferroelectric semiconductor is employed as the channel material while the 
gate insulator is the dielectric. The two non-volatile polarization states in 
FeS-FETs exist in the ferroelectric semiconductor channel. Therefore, a high 
quality amorphous gate insulator can be used instead of the common 
polycrystalline ferroelectric insulator for Fe-FETs. The fabricated FeS-FETs 
exhibit high performance with a large memory window, a high on/off ratio 
over 108, a maximum on-current of 862 μA/μm, low supply voltage with 
scaled gate insulator and the potential to exceed the existing Fe-FETs for 
non-volatile memory applications. 

[1] M. Si, S. Gao, G. Qiu, J. Qin, Y. Duan, J. Jian, H. Wang, W. Wu, and P. D. 
Ye, “A Ferroelectric Semiconductor Field-Effect Transistor,”, 
arXiv:1812.02933. 

9:00am 2D+EM+MI+MN+NS+QS-WeM-4 Ab initio Informed Theory of 
Axis-dependent Conduction Polarity in Goniopolar Materials, Yaxian 
Wang, B He, M Arguilla, N Cultrara, M Scudder, J Goldberger, J Heremans, 
W Windl, The Ohio State University 

NaSn2As2 has recently been synthesized and was found to be an 
exfoliatable van der Waals Zintl phase, opening new opportunities for 
electronic design on the few-atom-thick scale. Although the band structure 
may suggest a range of metal to semi-metal, it shows strong anisotropy 
especially in its “polarity”, characterized by its dominant carrier type, which 
strongly affects its electronic and thermal properties. We used DFT 
calculations to investigate bandstructure and Fermi surface. In addition, we 
employed BoltzTraP code to calculate the transport behavior in in/cross-
plane directions, predicting strongly anisotropic carrier transport and 
directionally dependent polarity –“goniopolarity” – in this layered material. 
It is confirmed by experimental thermopower measurements. We show 
from simulations on a model band structure the Fermi surface geometry 
origin in a single-band toy model, and we utilize the bandwidth concept 
from a tight-binding model to give an insight of real space orbital 
contributions and nature of the bonding states in this layered crystal. Based 
on that, additional candidate materials for goniopolarity can be proposed, 
and the design space for goniopolar materials in general will be defined. 

9:20am 2D+EM+MI+MN+NS+QS-WeM-5 In-Plane Mechanical Properties 
and Strain Engineering of 2D Hybrid Organic-Inorganic Perovskites, Qing 
Tu, I Spanopoulos, S Hao, C Wolverton, M Kanatzidis, G Shekhawat, V 
Dravid, Northwestern University 

Two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs) are new 
members of the 2D materials family with wide tunability, highly dynamic 
structural features and excellent physical properties. Mechanical strain is 
inevitable in 2D-HOIP-based applications due to materials processing, 
thermal expansion and substrate deformation. Understanding the 
mechanical properties and strain engineering of such functional materials 
are both fundamentally and practically important to achieve high 
performance and mechanically stable (flexible) devices. Here the in-plane 
mechanical properties and the impact of in-plane uniaxial tensile strain on 
the electronic properties of 2D lead iodide perovskites with a general 
formula (CH3(CH2)3NH3)2(CH3-NH3)n-1PbnI3n+1 were reported for the first 
time. The in-plane Young’s modulus and breaking strength of ultrathin 2D 
HOIP flakes were measured by AFM-based nanoindentation of suspended 
2D HOIP membranes.[1] The in-plane Young’s moduli of 2D HOIPs are 
smaller than that of conventional covalently bonded 2D materials like 
graphene and MoS2 due to the much more deformable [PbI6]4- octahedra 
structure. Both the Young’s modulus and breaking strength first decrease 
and then plateau as the thickness of 2D HOIP flake increases from 
monolayer to 4 layers, which is attributed to interlayer slippage during 
deformation. Ultrathin 2D HOIPs exhibit outstanding breaking 
strength/Young’s Modulus ratio compared to many other widely used 
engineering materials and polymeric flexible substrates, which renders 
them suitable for application into flexible electronic devices. Furthermore, 
the uniaxial tensile strain was found to increase the band gap of 2D 
HOIPs.[2] Such strain effect on the band gap of 2D HOIPs is fully reversible 
and depends on the structural unit of the materials. For2D HOIP with n = 5, 
the strain response of the band gap can be as high as 13.3 meV/%. First-
principles simulations show that the strain response of the band gap arises 
from the rotation of the inorganic [PbI6]4- octahedra and the consequential 
Pb-I bond stretching and increase of Pb-I-Pb angle. The observed band gap–
strain relationship can be harnessed to map the local mechanical strain in 
2D HOIP-based devices and allow 2D HOIPs for sensing applications. 

References  

[1]. Tu Q, Spanopoulos I, Yasaei P, Stoumpos CC, Kanatzidis MG, Shekhawat 
GS, et al. Stretching and Breaking of Ultrathin 2D Hybrid Organic–Inorganic 
Perovskites. ACS Nano. 2018;12(10):10347-54. 

[2]. Tu Q, Spanopoulos I, Hao S, Wolverton C, Kanatzidis MG, Shekhawat 
GS, et al. Probing Strain-Induced Band Gap Modulation in 2D Hybrid 
Organic–Inorganic Perovskites. ACS Energy Letters. 2019;4(3):796-802. 

9:40am 2D+EM+MI+MN+NS+QS-WeM-6 Collective Electronic States of 
Epitaxial Monolayer 1T-NbSe2, Zhuozhi Ge, University of Wisconsin; H 
Zhang, L Liu, C Yan, West Virginia University; M Weinert, University of 
Wisconsin; L Li, West Virginia University 

At the single layer limit, transition metal dichalcogenides (TMDs) can adopt 
two different structural variants depending on the anionic environment 
around the metal ions: the anions are arranged in trigonal prismatic fashion 
in the 1H polymorph, whereas in 1T the arrangement is octahedral. While 
bulk 1T NbSe2 doesn’t exist in nature, here we show that single layer 1T 
NbSe2 polymorph can be grown by molecular beam epitaxy on epitaxial 
graphene/SiC(0001) substrates. A (Ö13xÖ13) Star-of-David charge density 
waves is observed by in situ scanning tunnelling microscopy, which persists 
above room temperature. A gap of 0.50 eV is further observed by 
tunnelling spectroscopy and angle resolved photoemission spectroscopy, 
indicating that this monolayer 1T phase of NbSe2 is also a Mott insulator, 
similar to that of bulk 1T TaS2. Our findings indicate that the presence of 
epitaxial constraints can generate structural configurations that are 
prohibited in fully-bonded TMD crystals. These findings and their 
implication on the collective electronic states of single layer 1T-NbSe2 will 
be discussed at the meeting. 

11:00am 2D+EM+MI+MN+NS+QS-WeM-10 Magnetic Interfaces of MnSe2 
Monolayer, Tomas Rojas, S Ulloa, Ohio University 

Until recently, 2D magnetism was thought to occur together with defects 
or doping on different substrates. This situation changed drastically, as 
intrinsic Cr-based ferromagnetic monolayer materials were discovered, 
namely CrI3 and Cr2Ge2Te6. A different material, MnSe2, was predicted as 
stable ferromagnetic monolayer by first-principles calculations, and it has 
been successfully grown on several substrates. In this study, the authors 
confirm the intrinsic ferromagnetism of the monolayer, while for thicker 
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samples they report an interface of the MnSe2 monolayer with bulk α-
MnSe(111). This phase of the material is non-magnetic, and yet the 
observed magnetic moments are of up to twice the value of those in the 
monolayer alone. In this work, we present a detailed analysis of the 
interactions at this interface between the two phases, using the Heyd-
Scuseria-Ernzerhof hybrid functional. We have studied the effects on the 
electronic and magnetic structure of both phases of the material, and the 
dependence on the sample thickness. We study the role that strain plays at 
the interface, and how it affects the magnetic moments of the structure. 

Supported by NSF-DMR 1508325, and Ohio Supercomputer Center . 

11:20am 2D+EM+MI+MN+NS+QS-WeM-11 Orbital Design of Topological 
Insulators from Two-dimensional Semiconductors, Shixuan Du, Institute 
of Physics, Chinese Academy of Sciences, China 

Two-dimensional (2D) materials have attracted much recent attention 
because they exhibit various distinct intrinsic properties/functionalities, 
which are, however, usually not interchangeable. Interestingly, here we 
propose a generic approach to convert 2D semiconductors, which are 
amply abundant, to 2D topological insulators (TIs), which are less available, 
via selective atomic adsorption and strain engineering. The approach is 
underlined by an orbital design principle that involves introducing an 
extrinsic -orbital state into the intrinsic -bands of a 2D semiconductor, so as 
to induce - band inversion for a TI phase, as demonstrated by tight-binding 
model analyses. Remarkably, based on first-principles calculations, we 
apply this approach to convert the semiconducting monolayer CuS and 
CuTe into a TI by adsorbing Na and K respectively with a proper -level 
energy, and CuSe into a TI by adsorbing a mixture of Na and K with a tuned 
-level energy or by adsorbing either Na or K on a strained CuSe with a 
tuned -level valence band edge. Our findings open a new door to the 
discovery of TIs by a predictive materials design, beyond finding a 
preexisting 2D TI. 

This work is in collaboration with Lei Gao and Jia-Tao Sun from IoP-CAS, 
Gurjyot Sethi and Feng Liu from University of Utah, Yu-Yang Zhang from 
UCAS. 

11:40am 2D+EM+MI+MN+NS+QS-WeM-12 Rotationally Controlled van 
der Waals Heterostructures of 2D Materials, Emanuel Tutuc, K Kim, G 
Burg, H Movva, The University of Texas at Austin INVITED 

Heterostructures of atomic layers such as graphene, hexagonal boron-
nitride, and transition metal dichalcogenides (TMDs) can serve as testbed 
for novel quantum phenomena in two-dimensions, and potential device 
applications. A key ingredient that can add a new dimension to the atomic 
layer heterostructures palette is the rotational control, and alignment of 
different two-dimensional (2D) layers. We review here an experimental 
technique that enables rotationally controlled heterostructures with 
accurate alignment of the individual layer crystal axes [1]. We illustrate the 
applicability of this technique to the rotationally aligned double layers of 
graphene [2], or TMDs [3] separated by a tunnel barrier which display 
resonant, energy- and momentum-conserving tunneling in vertical 
transport, consistent with theoretical expectations. When two 2D layers 
are overlaid with a relative twist, the resulting heterostructure shows a 
new type of periodicity associated with the moiré superlattice, which are 
only beginning to be systematically investigated as platform for strongly 
correlated electron physics. We discuss the electron transport in tunable 
moiré patterns realized in twisted bilayer [4], and double bilayer graphene 
heterostructures. 

Work done in collaboration with S. K. Banerjee, L. F, Register, B. J. LeRoy, A. 
H. MacDonald, T. Taniguchi, and K. Watanabe. 

[1] K. Kim et al., Nano Lett. 16, 1989 (2016); 

[2] G. W. Burg et al., Nano Lett. 17, 3919 (2017); G. W. Burg et al., Phys. 
Rev. Lett. 120, 177702 (2018). 

[3] K. Kim et al., Nano Lett. 18, 5967 (2018). 

[4] K. Kim et al., Proc. Natl. Acad. Sci. USA 114, 3364 (2017). 
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