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8:00am AP+BI+PS+TF-WeM-1 Open Spaces in Al2O3 Film Deposited on 
Widegap Semiconductors Probed by Monoenergetic Positron Beams, 
Akira Uedono, University of Tsukuba, Japan; T Nabatame, NIMS, Japan; W 
Egger, T Koschine, Universität der Bundeswehr München, Germany; C 
Hugenschmidt, M Dickmann, Technische Universität München, Germany; 
M Sumiya, NIMS, Japan; S Ishibashi, AIST, Japan INVITED 

Positron annihilation is a useful technique for characterizing vacancy-type 
defects in semiconductors, and it has been successfully used to detect 
defects in GaN. This technique is also useful for detecting open spaces in 
thin amorphous films deposited on semiconductor substrates. When a 
positron is implanted into condensed matter, it annihilates with an electron 
and emits two 511-keV gamma quanta. The energy distribution of the 
annihilation gamma rays is broadened by the momentum component of 
the annihilating electron-positron pair. A freely diffusing positron may be 
localized in a vacancy-type defect because of Coulomb repulsion from 
positively charged ion cores. Because the momentum distribution of the 
electrons in such defects differs from that of electrons in the bulk material, 
these defects can be detected by measuring the Doppler broadening 
spectra of the annihilation radiation. Because the electron density in open 
spaces or vacancy-type defects is lower than that in the bulk, the lifetime of 
positrons trapped by such regions is longer than that of positrons in the 
delocalized state. Thus, the measurement of the positron lifetime also 
provides information of open spaces and vacancies in solid. In the present 
work, open spaces and defects in the Al2O3(25 nm)/GaN structure were 
probed by using monoenergetic positron beams. 

Al2O3 films were deposited on GaN by atomic layer deposition at 300oC. 
Temperature treatment above 800°C leads to the introduction of vacancy-
type defects in GaN due to outdiffusion of atoms from GaN into Al2O3. The 
width of the damaged region was determined to be 40-50 nm from the 
Al2O3/GaN interface, and some of the vacancies were identified to act as 
electron trapping centers. In the Al2O3 film before and after annealing 
treatment at 300-900oC, open spaces with three different sizes were found 
to coexist. The density of medium-sized open spaces started to decrease 
above 800°C, which was associated with the interaction between GaN and 
Al2O3. Effects of the electron trapping/detrapping processes of interface 
states on the flat band voltage and the defects in GaN were also discussed. 

The present research suggests that the interaction between amorphous 
Al2O3 and GaN introduces not only vacancy-type defects in GaN but also 
changes the matrix structure of Al2O3 film. We also revealed that the 
electron trapping/detrapping processes of interface charge states are 
influenced by the defects introduced in GaN. 

8:40am AP+BI+PS+TF-WeM-3 Surface Reaction Analyses of Atomic-layer 
Etching by Controlled Beam Experiments, Kazuhiro Karahashi, T Ito, S 
Hamaguchi, Osaka University, Japan 

In manufacturing of modern advanced semiconductor devices such 
magnetoresistive random-access memories (MRAMs), phase-change 
random-access memories (PRAMs), and three-dimensional integrated 
circuit (3D IC) devices, damage-free high-precision etching for various 
materials is an indispensable process technology. Halogenation of a surface 
layer combined with low-energy ion bombardment or ligand-exchange of 
organic molecules for the formation of metal complexes is a surface 
reaction that may be used for such highly selective etching processes with 
atomic-scale precision. A better understanding of surface reactions taking 
place during the etching process often allows one to control and optimize 
the process more effectively. In this study, we have developed a new 
surface-reaction analysis system with highly controlled beams of various 
species and examined surface reaction mechanisms of plasma-assisted or 
thermal atomic-layer etching (ALE) processes for silicon (Si), copper (Cu), 
and nickel (Ni) films. The beam experiment of this system offers an 
experimental “simulation” of actual ALE surface reactions. The system is 
equipped with differentially-pumped multiple beam sources that can 
irradiate the sample set in an ultra-high-vacuum (UHV) chamber with 
different types of beams, i.e., low-energy ions, thermal molecules, 
metastable radicals, and atomic/molecular clusters, independently. During 

the beam irradiation, scattered and desorbed species may be measured by 
a differentially pumped quadrupole mass spectrometer (QMS). Time-
resolved measurements of QMS synchronized with pulsed beam irradiation 
facilitate detailed analysis of the beam-surface interactions. Chemical 
states of adsorbed species on the sample surface may be measured by X-
ray photoelectron spectroscopy (XPS). In this presentation, we discuss the 
mechanisms of halogenated-layer formation on the Si, Cu, or Ni surfaces by 
their exposure to XeF2 or Cl2 gases and the removal mechanisms of 
halogenated species from the surface by low-energy ion irradiation or 
surface heating. Thermal desorption mechanisms of Cu or Ni by the metal-
complex formation with organic molecules (such as diketones) from its 
oxidized surface are also discussed 

9:00am AP+BI+PS+TF-WeM-4 Surface Reaction Analysis of Fluorine-based 
Reactive Ion Etching (RIE) and Atomic Layer Etching (ALE) by Molecular 
Dynamics (MD) Simulation, Erin Joy Tinacba, M Isobe, K Karahashi, S 
Hamaguchi, Osaka University, Japan 

Plasma etching has always been a useful process in semiconductor device 
fabrication. There are several ways of using plasma etching such as reactive 
ion etching (RIE), wherein the material surface is bombarded with 
energetic ions while it also exposed to chemically reactive radicals from the 
plasma. Because of the energy provided by bombarding ions and high 
chemical reactivity on the surface, the surface is etched even at a relatively 
low temperature due to the combination of physical and chemical 
sputtering effects. RIE is often suited to fast etching processes of high 
aspect ratio structures since it can provide high etching yields. Another 
application of plasma etching is plasma-assisted atomic layer etching (ALE), 
wherein chemical and sputtering effects of typical plasma etching are 
separated into two steps. In a typical ALE process, the first step is an 
adsorption step wherein chemically reactive molecules or radicals from a 
plasma are used to modify the material surface. The modified monolayer or 
a thin layer on the material surface is then etched during the subsequent 
desorption step (second step) where low-energy ions bombard the surface. 
The etching reaction stops when the modified layer is depleted. This cycle 
is repeated many times until the desired etched depth is reached. The ALE 
process might be slow but it can provide tight control in the etch variability 
for sub-10 nm technology applications. 

In this paper, molecular dynamic (MD) simulation is used to understand the 
effects of ions and radicals of high fluorine (F) content on etching reactions 
of silicon (Si), silicon dioxide (SiO2), and silicon nitride (Si3N4), which may be 
observed in RIE processes based on, e.g., SF6, C2F6, or NF3 plasmas. If such a 
plasma is used as a radical source and ion bombardment steps by inert gas 
ions are separated from the radical exposure steps, an ALE process may be 
performed with similar surface reactions. In typical RIE, a supply of a large 
amount of fluorine to the surface by increasing the flux of energetic ions 
containing multiple F atoms (such as SF5

+, C2F5
+ and NF2

+ ions) and/or by 
increasing a F radical flux to the surface results in high etch rates. It has 
been found that the etching rates by such highly fluorinated ions obtained 
from MD simulations are in good agreement with experimental 
observations and the deep fluorination of the surface accounts for their 
high etch rates. Although fluorine may be considered too corrosive to be 
used for ALE, we also analyzed by MD simulation an ALE process by 
fluorine-containing radicals such as NF2 and compared the results with 
experimental observations. 

9:20am AP+BI+PS+TF-WeM-5 Analysis of Metal Surface during Atomic 
Layer Etching with Gas Cluster Ion Beam and Organic Acid, Noriaki 
Toyoda, K Uematsu, University of Hyogo, Japan 

Surface states of metal surface after atomic layer etchings (ALE) with gas 
cluster ion beam (GCIB) and organic acid were investigated using surface 
analysis tools (mainly X-ray photoelectron microscopy). In recent years, we 
have reported the usage of GCIB irradiation for the removal steps of ALE. 
Since GCIBs are aggregates of thousands of gas atoms or molecules, the 
energy/atoms or energy/molecules can be easily reduced to several eV 
even though the total energy of GCIB is several keV. This characteristic is 
beneficial for low-damage irradiation. In additions, since GCIBs induce 
dense energy deposition, the bombarded area experiences transient high-
temperature and high-pressure conditions. As a result, chemical reactions 
are enhanced at low-temperature. These characteristics are suitable for the 
removal step in ALE. 

In this study, we have investigated the surface state of metal (Ni, Cu) after 
ALE with GCIB and organic acid using in-situ XPS. Prior to GCIB irradiation, 
metal surfaces were cleaned by Ar ions. Then Ni or Cu surface were 
exposed to acetic acids or acetylacetones. The surface layer with adsorbed 
organic acid on metals were removed by subsequent GCIB irradiation. The 
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difference of the surface states of metal between Ar and O2-GCIB 
irradiation are compared with in-situ XPS results. Etching mechanism by 
GCIB in the presence of the adsorbed organic acid will be discussed. 

9:40am AP+BI+PS+TF-WeM-6 In-situ Characterization of Growth Kinetics 
of Piezoelectric Films Grown by Atomic Layer Deposition Utilizing an 
Ultra-high Purity Process Environment, Nicholas Strnad, General Technical 
Services, LLC; D Potrepka, U.S. Army Research Laboratory; N O'Toole, B 
Rayner, Kurt J. Lesker Company; J Pulskamp, U.S. Army Research 
Laboratory 

Recently, PbZrxTi1-xO3 (PZT) was grown by atomic layer deposition (ALD) in a 
piezoelectric film stack that was micro-machined into electrically actuated 
cantilever beams. [1] ALD PZT is a process technology that may drive 3D 
PiezoMEMS that utilizes piezoelectric films deposited on micro-machined 
sidewall structures. AlN is also a desirable piezoelectric for 3D PiezoMEMS 
but integration has been hampered by its sensitivity to reactive background 
gases resulting in oxygen contamination of several atomic percent and 
above. [2] Reactive background gases can also impact oxide films by 
skewing the non-uniformity and growth-per-cycle (GPC). Thus, individual 
reactor conditions play a significant role in both the growth kinetics, and 
resulting quality of thin films grown by ALD. To address both of these issues 
there exists the need for ultra-high purity (UHP) process capability. Here, 
we present how the transition from non-UHP to UHP process environment 
affects ALD AlN and the constituent oxide films in ALD PZT. The UHP 
process environment also enables the rapid characterization of the 
reaction kinetics of ALD processes by in-situ ellipsometry. The reaction 
kinetics of several constituent oxides for ALD PZT are presented based on 
empirical in-situ observations. 

References 

[1] Strnad, N.A. (2019) Atomic Layer Deposition of Lead Zirconate-Titanate 
and Other Lead-Based Perovskites (Doctoral Dissertation) 
https://doi.org/10.13016/8dqx-7pev 

[2] Chen, Z. (2019) Thermal atomic layer deposition of aluminum nitride 
thin films from AlCl3 (Master’s Dissertation)  

11:00am AP+BI+PS+TF-WeM-10 Nanoscale Surface Modification of 
Medical Devices using Accelerated Neutral Atom Beam Technology, 
Dmitry Shashkov, J Khoury, B Phok, Exogenesis Corp. INVITED 

Controlling surface properties of biomaterials is vital in improving the 
biocompatibility of devices by enhancing integration and reducing bacterial 
attachment. We use Accelerated Neutral Atom Beam (ANAB) technology, a 
low energy accelerated particle beam gaining acceptance as a tool for 
nanoscale surface modification of implantable medical devices. ANAB is 
created by acceleration of neutral argon atoms with very low energies 
under vacuum which bombard a material surface, modifying it to a shallow 
depth of 2-3 nm. This is a non-additive technology that results in 
modifications of surface topography, wettability, and chemistry. These 
modifications are understood to be important in cell-surface interactions 
on implantable medical devices. Similarly, ANAB could be used to modify 
surfaces of medical device coatings (small molecules and proteins)., 
creating a native drug elution barrier. In this study, we characterize the 
effects of ANAB on several materials including metals (Ti, CoCr) and 
polymers (PEEK, PP, PVC) and measure the differential ability of eukaryotic 
versus prokaryotic cell attachment on these modified surfaces. We also 
study the ability of ANAB to create an elution barrier on a drug coating 
without the use of binding polymers. We identified that eukaryotic cells 
including mesenchymal stem cells (MSC) and osteoblasts increase 
attachment and proliferation on treated surfaces as measured by MTS 
assay and cell visualization by microscopy. MTS assay shows that by day 14, 
control PEEK has 9,925±1,994 cells while ANAB-treated PEEK has 
88,713±6,118 cells (n=3; p<0.0014). At the same time, we find that 
bacterial cells including S.aureus and P.aeruginosa have a decreased ability 
to bind on the ANAB-treated surface. This dichotomy of cellular attachment 
may be attributed to the nano-scale surface topography, favoring larger 
eukaryotic cells while inhibiting attachment of smaller bacterial pathogens. 
In studies focusing on drug elution, rapamycin was spray-coated on the 
surface of CoCr bare metal stents and either left as control or ANAB-
treated the surface of the drug. These stents were then placed in a plasma 
elution assay for up to 7 days. We found that untreated stents eluted off 
most of the drug within 24 hours, and 100% of it by 48 hours post-elution. 
The ANAB-treated stents, however, showed a favorable elution profile 
slowly releasing the drug over the 7 day period. ANAB, therefore, has many 
possible uses in medical device technology in increasing integration, 
decreasing bacterial attachment and potentially biofilm formation, and, if 

desired, create an elution profile for a combination drug-device without 
the use of binding polymers. 

11:40am AP+BI+PS+TF-WeM-12 Chemically Enhanced Patterning of Nickel 
for Next Generation EUV Mask, Xia (Gary) Sang, E Chen, University of 
California, Los Angeles; T Tronic, C Choi, Intel Corporation; J Chang, 
University of California, Los Angeles 

The ever-increasing demand in high-precision pattern definition and high-
fidelity pattern transfer in the IC manufacturing industry calls for 
continuous advancement in lithography technology. Extreme Ultra-Violet 
(EUV) lithography is being widely adopted for defining sub-10 nm nodes. 
Due to its ideal optical properties, Ni is under active research as the future 
absorbing layer material in EUV masks, the profile of which determines the 
quality of resulting lithographic patterns. Contemporary techniques for 
patterning Ni rely on noble ion beam milling, which leaves considerable 
amounts of re-deposition on feature sidewall. Finding chemically selective 
patterning technique is thus of critical importance. Due to the etch-
resistant nature of Nickel, removal at an atomic level is enabled by 
chemical modification of the surface through plasma exposure and 
subsequent introduction of organic ligands. Plausible chemicals are first 
screened by thermodynamic assessments from available databases, 
experiments were then conducted to validate the theoretical predictions. 

Both blanket and patterned Ni thin films were studied using this reaction 
scheme. Organic chemistries, such as acetic acid and formic acid were first 
investigated to determine the feasibility of metal-organic formation 
through direct exposure. The efficacy of acetic acid and formic acid etching 
chemistries were confirmed through solution-based studies on Ni, the 
formation of Ni(CH3COO)2 and Ni(HCOO)2 were confirmed through mass 
spectrometry. Nickel oxide formation and subsequent removal were 
confirmed by quantifying the change in the relative intensities of peaks of 
metallic Ni (852.6 eV) and oxidized Ni (853.7 eV) by X-Ray Photoelectron 
Spectroscopy (XPS). 

The chemical reactivity difference between Ni0 and Ni2+ was quantified in 
the work to explore the attainable etch selectivity. Due to the decrease in 
radical concentration and flux, vapor phase etching of metallic Ni resulted 
in small thickness reduction (~ 0.4 nm/cycle). It is then tested that surface 
modification, particularly oxidation, is capable of promoting subsequent 
reactions by lowering reaction energy barrier through metal oxide 
formation. An oxygen plasma treatment is added prior to acid vapor 
exposure, and this cyclic approach results in a relatively linear etch rate of ~ 
2 nm/cycle, which translates to a 50:1 etching selectivity of NiO over Ni. 
The same cyclic approach was then applied to patterned samples, post-
etch sidewall angle of ~ 85° is measured, which closely conserves the initial 
feature profile (~ 87°). 

12:00pm AP+BI+PS+TF-WeM-13 Surface Reactions of Low Energy 
Electrons and Ions with Organometallic Precursors and their Relevance to 
Charged Particle Deposition Processes, Rachel Thorman, Johns Hopkins 
University; E Bilgilisoy, FAU Erlangen-Nürnberg, Germany; S Matsuda, L 
McElwee-White, University of Florida; D Fairbrother, Johns Hopkins 
University 

Focused electron beam induced deposition (FEBID) and focused ion beam 
induced deposition (FIBID) are nanofabrication techniques where beams of 
charged particles (electrons or ions) create metal-containing 
nanostructures by decomposing organometallic precursors in low pressure 
environments. Consequently, the interactions of electrons and ions with 
surface-bound organometallic precursors are fundamental processes in 
these deposition processes. Previously performed ultra-high vacuum (UHV) 
studies on low energy (below 100 eV) electron interactions with adsorbed 
precursors (e.g. Pt(PF3)4, MeCpPtMe3, and Co(CO)3NO) have revealed that 
electron-induced reactions of surface bound precursors occurs in two 
sequential steps: (1) an initial step characterized by precursor 
decomposition/deposition and partial ligand desorption followed by (2) 
decomposition of the residual ligands. However, a similar level of 
understanding does not exist for low energy ion interactions with 
organometallic precursors. In this presentation, I will show that a low 
temperature, UHV surface science approach can serve as a platform to 
study the reactions of both low energy electrons (500 eV) and low energy 
ions (<1kV Ar+ ions) with organometallic precursors. Results from in situ X-
ray photoelectron spectroscopy (XPS) and mass spectroscopy (MS) clearly 
show that low energy electron and ion-induced reactions of several 
surface-adsorbed species, including (η5-Cp)Fe(CO)2Re(CO)5, Ru(CO)4I2, 
Fe(CO)5, and Co(CO)3NO, are markedly different. Similarly to electron-
induced reactions, low-energy ion-induced reactions proceed in a two-step 
process with an initial decomposition step primarily characterized by ligand 
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loss. However, ligand loss is typically must more extensive than is observed 
for electron-induced reactions; for example, in the case of (η5-
Cp)Fe(CO)2Re(CO)5 and Fe(CO)5, all CO ligands desorb in this initial step. The 
second step in the ion induced reactions can be described as a regime 
primarily characterized by physical sputtering. These contrasting results are 
discussed in the context of different deposition mechanisms proposed for 
FEBID and FIBID. 
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