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2:20pm PS2+AS+SS-TuA-1 Selective Mask Deposition Using SiCl4 Plasma 
for a Highly Selective Etching Process, Miyako Matsui, Hitachi Ltd., Japan; 
K. Kuwahara, Hitachi High-Tech Corp., Japan INVITED 

The local cell size of logic devices has been continuously shrinking at a 
scaling rate of about 0.48 per 2 years. Extreme ultraviolet (EUV) lithography 
is a key technology for pitch scaling, though the pitch scaling rate has been 
slowing down since 2010. To boost the scaling, design technology co-
optimization (DTCO) has been developed by using various kinds of self-
aligned processes. However, process challenges exist for both technologies. 
Etching processes using thin EUV resists require extremely high selectivity 
and precise control of critical dimensions. Selective etchings for DTCO 
require high selectivity between layers having a similar material 
composition. In both cases, selective deposition for forming protective 
layers only on unetched materials can solve these process challenges and 
achieve extremely highly selective etchings. 

In this study, we investigated a selective deposition process for forming 
protective layers on top of masks generated by a microwave-ECR etching 
system. A deposition layer was formed only on SiO2 masks without forming 
an unnecessary deposition layer on Si surfaces of etching area, such as 
bottoms of the patterns and isolated etching area. This process effectively 
achieves extremely highly selective etchings by selectively forming the 
protective layers prior to the etching procedure in the same chamber. 

We suggested a process for selectively forming protective layers on a SiO2 
without forming on a Si etching area by using a SiCl4/H2/Cl2 plasma. Top 
surfaces of the materials needed to be cleaned before forming the 
protective layer. Selectivity is thought to be provided by the difference in 
SiClx desorption processes. On the Si surface, adsorbed SiClx easily 
desorbed again by reacting with Cl generated from the plasma. On the 
other hand, adsorbed SiClx on SiO2 was thought to be more difficult to 
desorb by reacting with Cl due to Si-O having larger binding energy than Si-
Si. After the deposition layer was selectively formed on the SiO2 mask, the 
layer was oxidized using an O2 plasma treatment to improve the etching 
resistance during the Si-etching. The O2 plasma treatment time was 
controlled not to prevent the Si substrate from being etched during the Si-
etching. We found the optimum O/Si concentration of oxidized protective 
layer was about 0.4 from X-ray photoelectron spectra (XPS) analysis. 

We also demonstrated the selective deposition to etch a line-and-space 
pattern with a SiO2 mask. In this process, selective deposition, oxidation, 
and Si etching were cyclically carried out. The extremely highly selective 
etching was achieved using the selective deposition without forming an 
unnecessary deposition on an isolated Si area. 

3:00pm PS2+AS+SS-TuA-3 On the Self-bias Voltages at Sintered Yttrium 
Oxyfluoride (Y-O-F) and Y2O3 During Plasma Irradiation and Their Etching 
Rates due to Ion Bombardment, Tetsuya Goto, Y. Shiba, Tohoku 
University, Japan; A. Teramoto, Hiroshima University, Japan; Y. Kishi, 
Nippon Yttrium Co., Ltd, Japan; S. Sugawa, Tohoku University, Japan 

Yttrium oxyfluoride (Y-O-F) has been received much attention as the bulk 
and/or coating materials for functional components used in the plasma 
process chamber in semiconductor manufacturing, because chemical 
component stability of Y-O-F against various corrosive plasmas is better 
than that of widely used Y2O3 [1-3]. In addition to the chemical component 
stability, etching rate of these materials is also an important issue when 
particle problem and lifetime of the components are considered in 
industry. Previous report has shown that the etching rate of Y-O-F and Y2O3 
due to plasma irradiation is almost the same level [2]. On the other hand, 
we reported that, the etching rates of the sintered Y-O-F due to the Ar ion 
beam irradiation (without plasma) was clearly smaller than that of Y2O3 [3]. 
We speculated that such tendency was caused by higher atomic number 
density of Y-O-F than that of Y2O3. Thus, the etching behavior of Y-O-F and 
Y2O3 was different between the cases of the ion beam irradiation and the 
plasma irradiation. 

In this report, to understand the observed difference in more detail, we 
measured self-bias voltage Vdc of surfaces of Y-O-F and Y2O3 samples set on 
Si wafer in 13.56-MHz excited capacitive coupling Ar plasma. Here, Vdc, 

which is approximately an acceleration voltage of ions, is a good parameter 
to estimate ion bombardment energy at the sample surface. It was found 
that |Vdc| of Y2O3 was smaller than that of Y-O-F, suggesting that surface 
voltage condition was different under the normal setup of the samples for 
the plasma irradiation test. In this setup, etching rates of Y-O-F and Y2O3 
due to Ar plasma irradiation were found to be almost the same. 

Next, to equalize the surface voltages of Y2O3 and Y-O-F during the plasma 
irradiation as far as possible, we connected the sample surface and the Si 
wafer surface using electrically-conductive carbon tape. In this case, it was 
found that the etching rate of Y-O-F was smaller than that of Y2O3, showing 
the same behavior to the Ar ion beam etching experiment. 

The results suggested that the intrinsic etching resistance of Y-O-F due to 
the ion bombardment is better than that of Y2O3. Also, the results showed 
the importance of how the sample was set in the plasma irradiation test to 
accurately estimate plasma resistance. Furthermore, it is considered that, 
in the actual plasma equipment, plasma resistance depends strongly on 
how the protect material was set or coated. 

1. Y. Shiba et al, J. Vac. Sci. Technol. A, 35 (2017) 021405. 

2. H. Ashizawa and K. Yoshida, Int J Appl Ceram Technol. (2021) 1. 

3. T. Goto et al., J. Vac. Sci. Technol. A, 38 (2020) 043003. 

4:20pm PS2+AS+SS-TuA-7 In-Plasma Photo-Assisted Etching of Si with 
Chlorine Aided by an External Vacuum Ultraviolet Source, L. Du, D. 
Economou, Vincent M Donnelly, University of Houston 

Photo-assisted etching (PAE) of p-type Si(100) was found to occur in a 
chlorine-containing, Faraday-shielded, inductively coupled plasma (ICP) 
with no substrate bias, attributed mainly to the vacuum ultraviolet (VUV) 
light generated by the plasma. Other causes for the very high etching rates 
can be ruled out, including ion bombardment-assisted etching and 
chemical etching by Cl atoms. Masked samples produced slow etching 
(111) facets and smooth surfaces. To provide additional evidence for the 
VUV-PAE mechanism, the substrate in a main Cl2/Ar ICP was subjected to 
extra VUV light (mainly 104 and 106 nm Ar emission) that was generated in 
an independently controlled, auxiliary Ar/He ICP in tandem with the main 
ICP. The ICPs were separated by a tungsten mesh and a bundle of high-
aspect-ratio quartz tubes in a honeycomb configuration. There was no 
measurable perturbation of the main plasma by the auxiliary plasma. The 
etching rate was found to be enhanced by 11 to 51% with the additional 
VUV light provided by the auxiliary ICP. Absolute measurements of the 
auxiliary ICP photon flux at the surface were obtained in-situ by recording 
photoemission yields from a Au-coated sample in place of the Si substrate. 
Incredibly large etching yields of 90 to 240 Si atoms-per-photon were 
obtained. It is argued that etching is not a result of electron-hole pair 
formation, but is instead ascribed to a photo-catalytic chain reaction. No 
etching occurs with just Cl2(g) and the auxiliary VUV source, hence Cl atoms 
produced by the main ICP are required to produce the more highly 
chlorinated surface required for propagation of the chain reaction. 

4:40pm PS2+AS+SS-TuA-8 Etching of Silicon Dioxide (SiO2) Based on 
Remote Plasma-Based Functionalization and Electron Beam-Activation, 
Yudong Li, K. Lin, University of Maryland, College Park; C. Preischl, C. 
Hermanns, D. Rhinow, H. Solowan, M. Budach, H. Marbach, K. Edinger, Carl 
Zeiss SMT, Germany; G. Oehrlein, University of Maryland, College Park 

Electron-beam stimulated activation of SiO2 surfaces functionalized by 
remote plasma is demonstrated as a promising novel approach to achieve 
atomic scale etching. Compared to conventional plasma-based dry etching 
utilizing ion bombardment, electron-beam induced etching (EBIE) avoids 
ion-induced damage effects such as atomic displacement and atomic 
mixing. One issue with EBIE is the limited number of chemical precursors 
that is available to functionalize substrate surfaces without spontaneous 
etching. 

In this work, we demonstrate a new approach that combines surface 
functionalization by a remote plasma source and energy deposition using 
an electron beam source to enable EBIE. A prototypical case is SiO2 etching 
using Ar/CF4/O2remote plasma generated precursors and electron-beam 
initiated removal of the chemically reacted surface layer by low-energy 
electron bombardment. We evaluated the parametric dependence of 
SiO2etching on remote plasma source and electron flood gun operating 
parameters, including radiofrequency (RF) source power, CF4/O2 flow 
composition, electron energy and emission current, respectively. Two 
prototypical processing cases were examined: one simultaneous and two 
sequential remote plasma treatment and electron beam irradiation. 
Material selective atomic scale etching of Si3N4 over SiO2 and poly-Si over 
SiO2 were demonstrated. Surface chemcial modification and etching were 
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followed by in-situ ellipsometry measurements. Surface chemical changes 
were also characterized by x-ray photoelectron spectroscopy and revealed 
mechanistic insights for these processes. 

We gratefully acknowledge the financial support of this work by ZEISS SMT 
GmbH. 

5:00pm PS2+AS+SS-TuA-9 Investigation of Plasma-Surface Interactions 
During Plasma Enhanced Atomic Layer Deposition (PE-ALD) of Silicon 
Nitride Using in Situ Surface Chemistry Measurements, Samuel Johnson, 
University of Texas at Austin; J. Zhao, T. Iwao, J. Carroll, C. Schlechte, P. 
Ventzek, Tokyo Electron America; J. Ekerdt, University of Texas at Austin 

A low temperature process for silicon dielectric thin film deposition is 
necessary for a wide range of semiconductor process applications, 
including as spacers in FinFET and self-aligned multiple patterning. Using 
plasma enhanced atomic layer deposition (PE-ALD) with radio frequency 
(RF) power to deposit silicon nitride films is very promising as it lowers the 
deposition temperature compared to thermal atomic layer deposition; 
however, direct plasma enhanced processes face a difficulty of 
guaranteeing the conformality of film thickness and film properties on high 
aspect ratio, 3-dimensional device structures. Ionized plasma species have 
a high degree of directionality, resulting in differences between top facing 
and sidewall surface coverage and properties. Ion beam incoherency, 
which can be tuned by varying the frequency and pressure, may be used to 
achieve more property conformity. 

To explore the PE-ALD of silicon nitride, we built a radio frequency 
capacitively-coupled plasma (CCP) PE-ALD chamber.Our PE-ALD process 
involves one half cycle of dichlorosilane (DCS) gas for silicon layer 
adsorption, and another half cycle of an ammonia/argon plasma for 
nitridation. We used three different RF frequencies in deposition 
experiments on planar surfaces and a 3-dimensional trench-patterned 
surface in a silicon substrate. We have investigated the bulk film and 
surface chemistry using in situ X-ray photoelectron spectroscopy (XPS) and 
in situ Fourier-transform infrared spectroscopy (FTIR). With increasing 
frequency, the overall N-Hx bonding decreased (a higher percentage of 
nitrogen bonds were unsaturated), and the remaining N-Hx bonds became 
rich in N-H2 bonds compared to N-H bonds. Further details will be discussed 
on the correlations between the plasma characteristics (ion energy and 
angle, neutral flux, etc.), the in situ surface chemistry measurements, and 
the film properties. 

5:20pm PS2+AS+SS-TuA-10 Differences in Sidewall Chemistry for SiO2 and 
Si3N4 after Ar/HFC or Ar/FC Plasma Processing Using High Aspect Ratio 
Structures, Sang-Jin Chung, University of Maryland, College Park; P. Luan, 
A. Metz, M. Park, TEL Technology Center, America, LLC, USA; G. Oehrlein, 
University of Maryland, College Park 

State-of-the-art 3-dimensional memory devices utilize high-aspect-ratio 
(HAR) heterogeneous structures where 2 or more materials are etched 
simultaneously during the fabrication process. Controlling the sidewall 
chemistry of stacked materials etched using the same fluorocarbon (FC) or 
hydrofluorocarbon (HFC) process is one of the key factors for yielding 
excellent etch profiles. Here, we use a horizontal trench gap structure [1,2] 
to simulate the interaction of neutral radicals produced by FC and HFC 
plasma with SiO2 and Si3N4 sidewalls in HAR structures for aspect ratios 
(AR) of up to 90. Oxide and nitride trench structures were simultaneously 
treated with Ar/FC or Ar/HFC plasma without RF bias and changes in film 
thickness were probed by ellipsometry as a function of AR. We find a 
variety of responses of the trench sidewalls for the remote plasma 
conditions, including both polymer deposition and spontaneous etching. 
These responses are dependent on the type of FC and HFC gases, the 
surfaces being exposed, and the position relative to the trench entrance. 
For HFC chemistry, oxide shows relatively little etching near the trench 
entrance followed by the presence of a very thin FC layer (<1 nm) for 
increasing AR. For the same conditions Si3N4 shows significantly more 
etching both near the entrance and for high AR deep in the structure. For 
FC plasma the behavior is different and polymer deposition is primarily 
seen for the high-AR trench structures. These observed behaviors are 
further correlated to the scalloping phenomenon commonly seen in 
layered ONO HAR structures. We will also discuss the surface responses 
with in-situ characterizations, including optical emission spectroscopy 
(OES), and FC deposition rate measurements seen for directly exposed SiO2 
or Si3N4 surfaces. 

[1] Zheng, L., Ling, L., Hua, X., Oehrlein, G. S. & Hudson, E. A. Studies of film 
deposition in fluorocarbon plasmas employing a small gap structure. J. Vac. 
Sci. Technol. A Vacuum, Surfaces, Film. 23, 634–642 (2005). 

[2] Knoll, A. J., Pranda, A., Lee, H. & Oehrlein, G. S. Substrate temperature 
effect on migration behavior of fluorocarbon film precursors in high-aspect 
ratio structures. J. Vac. Sci. Technol. B. 37, 031802 (2019). 

5:40pm PS2+AS+SS-TuA-11 Significance of Plasma-Surface Interactions in 
the Etch Behavior of Low-k Materials, Adam Pranda, S. Grzeskowiak, Y. 
Yoshida, E. Liu, Y. Han, P. Biolsi, TEL Technology Center, America, LLC; K. 
Kobayashi, N. Ikezawa, Tokyo Electron Miyagi Ltd., Japan 

Low-k materials are an integral component in the advancement of 
semiconductor device performance by reducing parasitic capacitance and 
enabling faster device switching for a given thickness compared to 
traditional dielectric materials such as SiO2. With the advances in logic 
scaling, low-k materials are increasingly more prominent in the structures 
of advanced devices. For example, low-k materials are being targeted as 
the inner spacer ingate-all-around (GAA) nanosheet field effect transistors. 
Consequently, the integration of low-k materials requires that the etch 
behavior of these materials be well understood so that the device 
structures can be reliably and reproducibly fabricated. In this study, we 
used a high-density plasma reactor with benchmark CF4- and NF3-based 
process chemistries to etch low-k materials including SiCN, SiOCN, and 
SiBCN along with reference materials including Si, SiO2, and SiN. We utilized 
a characterization suite consisting of optical emission spectroscopy (OES), 
mass spectroscopy (MS), spectroscopic ellipsometry (SE), x-ray 
photoelectron spectroscopy (XPS), and attenuated total reflection Fourier 
transform infrared spectroscopy (ATR-FTIR) to understand the relationships 
between the plasma conditions (OES, MS), the evolution of the surface 
chemistry of the materials (XPS, ATR-FTIR), and the resulting etch behavior 
(SE). The etch behavior of low-k materials under a given etch process is 
vital for establishing the etch selectivities in multilayer structures that are 
required to yield complex device geometries. For example, we found a 
correlation in the relative magnitude of OES trend for the CN emission at 
387nm to the low-k material etch rate, which suggests that preferential 
sputtering of the nitrogen and possibly carbon from the sample is one of 
the main pathways for the etching of nitrogen-containing low-k materials. 
Identifying the underlying mechanisms for the etch behaviors of low-k 
materials will provide key guidance into the development of etch processes 
that integrate these materials in current and future device structures. 

6:00pm PS2+AS+SS-TuA-12 Low Temperature Superpermeability in Metal 
Foils Exposed to Hydrogen Plasma, Chao Li, A. Job, Colorado School of 
Mines; M. Shimada, T. Fuerst, Idaho National Laboratory; D. Way, C. 
Wolden, Colorado School of Mines 

The hydrogen isotopes tritium (T) and deuterium (D) are leading fuels for 
use in future fusion reactors. In these reactors they combine to form He 
and an energetic neutron in a high density, magnetically confined plasma. 
Metal foil pumps are a technology to extract the unreacted isotopes from 
the He ash in the plasma exhaust and return them to the plasma in a 
process known as direct internal recycling. Hydrogen separation 
membranes typically work through a dissociative adsorption - atomic 
diffusion - recombinative desorption mechanism that relies on a hydrogen 
partial pressure gradient. Unlike molecular hydrogen, energetic H atoms 
and ions can bypass the dissociation/absorption step and directly enter the 
metal. This leads to hydrogen fluxes that can be orders of magnitude 
greater than expected from Sievert’s law, a condition described as 
superpermeability. In this study, we investigate the superpermeability of 
various metal foils (PdAg, V and α-Fe) exposed to inductively coupled H2 
plasma operating at low temperature (50-200 oC) and the results are 
compared to a fundamental model accounting for individual steps in 
hydrogen permeation. Systematic variation of foil temperature and plasma 
parameters were used to illuminate the key rate limiting steps in the 
mechanism. Interfacial treatments including oxidation, plasma cleaning, 
and the deposition of nanoscale interfacial layers were used to modify 
surfaces to improve the hydrogen permeation of metal foils. Auger and 
AFM characterization were used to study the surface elemental 
composition and metal surface roughness, respectively. Both H2 and D2 
plasmas were employed to better understand isotope effects. V foils with 
symmetric Pd deposition on both sides showed comparable permeation 
performance to PdAg foil with hydrogen flux exceeding 1020 m-2 s-1. On the 
other hand, plain α-Fe foils showed very stable, but lower (1019 m-2 s-1) 
hydrogen flux performance in repeated tests. Our findings suggest that V 
and α-Fe with appropriate surface modification are promising candidates 
for use as metal foil pumps for direct internal recycling of DT fuels in future 
fusion reactors. 
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