Thursday Afternoon, November 10, 2022

Advanced Surface Engineering Division Room 317 - Session SE+AS+MN+SS-ThA

Mechanical and Tribological Properties of Thin Films and Coatings

Moderators: Jyh-Wei Lee, Ming Chi University of Technology, Taiwan , Filippo Mangolini, The University of Texas at Austin

3:00pm SE+AS+MN+SS-ThA-3 Differential Impact of Scale Dependent Roughness on Lubricant Infused Surfaces, *Robert Chrostowski*, B. Fang, J. Smith, F. Mangolini, University of Texas at Austin

Lubricant Infused Surfaces (LIS), which consist of an engineered surface texture with an absorbed lubricant, have recently emerged as an innovative approach for achieving pressure-stable omniphobicity and for improving tribological performance in the presence of external contaminants. The design of successful LIS heavily relies on the effect of surface texture, which is quantified using a single dimensionless parameter, namely the ratio of the true surface area to the nominal surface area. Previous published studies have thus focused on the evaluation and optimization of microscale pattered morphologies with simple geometries (for which the ratio of the true surface area to the nominal surface area can be determined analytically), such as ordered arrays of pillars. Texture, however, is defined both by these larger-scale structures, and by smaller sub-micron scale asperities called roughness. Roughness can exhibit scaledependent fractal self-similarity, and the absolute finest scales of roughness can have outsize impact on the quantitative value of the area ratio. Despite the scientific relevance of previous studies on fractal surfaces and the effect of roughness on contact mechanics, our understanding of the effect of surface roughness on the retention of a lubricant is elusive.

Here, we evaluate the lubricant infusion behavior of two different fluorinated polymer lubricants of substantially different molecular size, but similar surface chemistry, on fractal nano-rough boehmitized aluminum surfaces. Power spectral density (PSD) analysis of atomic force microscopy (AFM) topography maps is used to estimate the area ratio for each surface at the length scale of the radius of gyration of the different lubricants. The area ratio values computed from the PSD are then related to true area value that matches predicted spin-coating curves to observed gravimetric ones. The experimental results demonstrate, for the first time, the impact fractal of roughness on the shear-retention of LIS.

The outcomes of this work, providing evidence that different molecular length fluids could experience different quantitative magnitudes of roughness on the same, significantly contribute to our understanding of the impact of scale-dependent roughness on the retention of liquids on engineered surface textures, while enhancing the scalability of LIS systems and their cost-effective implementation in several technological applications.

3:20pm SE+AS+MN+SS-ThA-4 Imperfectly Perfect Coatings for Rolling Bearing Applications, Esteban Broitman, SKF B.V. - Research and Technology Development, Netherlands INVITED Machines with rotating components usually rely on bearings to reduce friction in moving its parts around a fixed axis. The increasing demand for more precise bearings to lower power consumption and heat generation, while simultaneously support increasing applied loads and/or higher speeds, has given place to the use of surface engineering processes.

In the case of bearings, it is widely accepted the advantages of using coatings as the surface process to improve its performance. During the last three decades, advanced coatings have enjoyed a growing interest in several industrial applications because they can be engineered to provide different properties like electrical insulation, low friction, and resistance to corrosion, plastic deformation, etc.

In this talk I will compare the structural, mechanical and tribological properties of two coatings that are used nowadays to improve the performance of rolling bearings made of standard bearing steel: they provide lower friction, resistance to surface initiated rolling contact fatigue, and decreased wear: NoWear[®] (a carbon-based nanostructured coating made by plasma-assisted chemical vapor deposition PACVD) of about 3 µm-thick, and Black Oxide (an iron oxide film made by a chemical conversion method) of about 1 µm-thick. Being coatings produced by different techniques, both have a common feature: they are *"imperfectly perfect*

coatings." Scanning electron microscopy, X-ray photoelectron spectroscopy, and nanoindentation measurements show that, from the microstructural point of view, these coatings are full of *"imperfect"* features, like cracks, voids, porous, columns, and other naughty irregularities. The different mechanisms contributing to the positive tribological behavior of each coating under lubricated conditions will be discussed. I will demonstrate that these coatings, taking advantage of their own different *"imperfect"* features, behave *"perfectly"* from the tribological point of view, and therefore can successfully be used to extend maintenance and life expectancy of specialized rolling bearings.

4:00pm SE+AS+MN+SS-ThA-6 Tribological Behavior of WC/WCN/CNx Thin Films Deposited by HIPIMS, *Luis Flores-Cova*, O. Jimenez, M. Flores, Universidad de Guadalajara, Mexico

Coatings and thin films are used to protect against wear in many applications. If that coating also shows a low coefficient of friction, it brings better benefits, therefore, the research on coatings with these properties is of great interest. In this respect, carbon containing, or carbon-based coatings are the most popular. 52100 alloy used in wear environments has its own disadvantages. Consequently, many coating systems have been deposited on this allow to improve its wear resistance. In this study, a multilayer coating with carbon content (WC/WCN/CNx) was deposited by High Power Impulse Magnetron Sputtering (HiPIMS) on AISI 52100 alloy. No external heating was applied during the deposition, energetic tungsten ions increase adatoms mobility that enhance adhesion. The thickness and the growth morphology of the films were studied from FE-SEM crosssectional images. The chemical composition was analyzed by XPS. The structure of the coatings was analyzed by XRD technique. The mechanical properties (hardness and Elastic Modulus) were studied through nanoindentation techniques. The adhesion of coatings to the substrate was measured by means of scratch tests. Wear tests were performed using a tribometer with a pin on disc configuration, using a 10 mm diameter 52100 ball. The wear tracks were analyzed by SEM and the wear volume was obtained by optical profilometry. The coating showed a coefficient of friction lower than 0.3 and the wear rate was reduced 100 times relative to the substrate.

Author Index

Bold page numbers indicate presenter

Flores, M.: SE+AS+MN+SS-ThA-6, 1 Flores-Cova, L.: SE+AS+MN+SS-ThA-6, 1 — J — Jimenez, O.: SE+AS+MN+SS-ThA-6, 1 — M — Mangolini, F.: SE+AS+MN+SS-ThA-3, 1

- S -Smith, J.: SE+AS+MN+SS-ThA-3, 1