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2:20pm 2D+AS+EM-ThA-1 Periodic Lattice Displacements in Low 
Dimensional Materials, Robert Hovden, University of Michigan INVITED 

Dramatic electronic changes are associated with periodic lattice 
displacements [1] where structure, even in 2D materials, requires higher 
dimensional measurement using scanning / transmission electron 
microscopy. In particular charge density waves are an emergent periodic 
modulation of the electron density that permeates a crystal with strong 
electron-lattice coupling. Strong evidence suggests that transformative 
correlated electron behavior may exist only in unrealized clean 2D 
materials such as 1T-TaS2. Unfortunately, experiment and theory suggest 
that extrinsic disorder in free standing 2D layers impedes correlation-driven 
quantum behavior. Here we demonstrate a new route to realizing fragile 
2D quantum states through epitaxial polytype engineering of van der Waals 
materials. The isolation of truly 2D charge density waves (CDWs) between 
metallic layers stabilizes commensurate long-range order and lifts the 
coupling between neighboring CDW layers to restore mirror symmetries via 
interlayer CDW twinning. The twinned-commensurate (tC-) CDW reported 
herein has a single metal–insulator phase transition at ~350 K as measured 
structurally and electronically [2]. Fast in-situ transmission electron 
microscopy and scanned nanobeam diffraction map the formation of tC-
CDWs. This work introduces epitaxial polytype engineering of van der 
Waals materials to access latent 2D ground states distinct from 
conventional 2D fabrication. 

Here we show the critical temperature for spatially-coherent, 
commensurate (C-) CDW in 1T-TaS2 can be raised to well above room 
temperature (~150 K above the expected transition) by synthesizing clean 
interleaved 2D polytypic heterostructures. This stabilizes a collective 
insulating ground state (i.e. C-CDW) not expected to exist at room 
temperature. We show the formation of these spatially coherent states 
occurs when 2D CDWs are confined between metallic prismatic polytypes. 
At the same time, interleaving disables interlayer coupling between CDWs. 
This raises the critical temperature of the C-CDW and forms out-of-plane 
twinned commensurate (tC) CDWs as revealed by scanned nanobeam 
electron diffraction. These results demonstrate polytype engineering as a 
route to isolating 2D collective quantum states in a well-defined extrinsic 
environment with identical chemistry but distinct band structure. 

[1] Nature and evolution of incommensurate charge order in manganites 
visualized with cryogenic STEM, I. El Baggari et al. Proc. Natl. Acad. Sci. 
U.S.A. 115, 1445 (2018) 

[2] Two-dimensional charge order stabilized in clean polytype 
heterostructures, S. H. Sung et al. Nature Communications, 13 413 (2022) 

3:00pm 2D+AS+EM-ThA-3 Engineering of Nanoscale Heterogenous 
Transition Metal Dichalcogenide-Au Interfaces, Alex Boehm, Sandia 
National Laboratories; J. Fonseca, Naval Research Laboratory; K. Thuermer, 
J. Sugar, Sandia National Laboratories; J. Robinson, Naval Research 
Laboratory; T. Ohta, Sandia National Laboratories 

2-D transition metal dichalcogenides (TMDs) have recently garnered much 
attention owing to their extraordinary physical, chemical, electrical, and 
optical properties. However, early material and device studies have 
revealed that these properties can be greatly impacted by extrinsic factors 
such as substrate interactions, mechanical strain, and charge transfer. 
Thus, a careful understanding of the nuanced interactions between TMDs 
and other materials is critical for high performance devices. Of particular 
importance are the interfaces with metallic contacts. Here, one barrier are 
the spatial nonuniformities recently reported at these types of interfaces. 
Uncovering the impact of these heterogeneities on TMD properties and 
establishing strategies to control TMD-metal interfaces could enable an 
array of engineering pathways for future applications. In this work, we find 
that the electronic structures of mechanically exfoliated TMD-Au interfaces 
exhibit pronounced heterogeneity arising from microstructure of the 
supporting metal. Pertinent for device applications these electronic 
structure variations indicate fluctuating doping levels and Schottky barrier 
height across the junction. We examined the electronic structures of WS2 
and WSe2 at high spatial resolution via photoemission electron microscopy 
(PEEM) revealing key differences in work function and binding energies of 
the occupied states. Furthermore, the inherent role of the underlying Au 

microstructure on the TMD electronic structure is revealed by electron 
backscatter diffraction (EBSD) and scanning tunneling microscopy (STM). 
Finally, simple processing methods are employed to fabricate homogenous 
TMD-Au interfaces while also tuning the electronic properties of the TMDs. 
Our findings illustrate that the electronic properties of TMDs are greatly 
impacted by metal interface interaction and provide a means to engineer 
these important junctions. 

The work at Sandia National Laboratories was supported by Sandia’s LDRD 
program. The work at the US Naval Research Laboratory was funded by the 
Office of Naval Research. Sandia National Laboratories is a multi-mission 
laboratory managed and operated by National Technology and Engineering 
Solutions of Sandia, LLC., a wholly-owned subsidiary of Honeywell 
International, Inc., for the U.S. Department of Energy's National Nuclear 
Security Administration under contract DE-NA0003525. The views 
expressed in the article do not necessarily represent the views of the U.S. 
Department of Energy or the United States Government. 

3:20pm 2D+AS+EM-ThA-4 Advanced Laboratory-Based Momentum 
Microscopy and PEEM Analysis, Stefan Böttcher Böttcher, SPECS Surface 
Nano Analysis GmbH, Germany; D. Singh, T. Conard, IMEC, Belgium; M. 
Wietstruck, SPECS Surface Nano Analysis GmbH, Germany; P. van der 
Heide, IMEC, Belgium; A. Thissen, SPECS Surface Nano Analysis GmbH, 
Belgium 

Momentum Microscopy is a new technology for comprehensive surface 
analysis, providing high energy and angular resolved band structure 
mapping combined with advanced surface imaging capability. Extending 
this technology with laboratory-based instrumentation opens the 
possibility for detailed studies of new materials under well controlled 
environments. The combination of a PEEM lens for surface microscopy and 
momentum microscopy, allows for small spot analysis in ARPES and 
chemical sensitive surface mapping. In a joint project between IMEC and 
SPECS the possibilities for laboratory-based momentum microscopy, laser 
ARPES and x-ray spectroscopy and microscopy are evaluated in the 
framework of semi-industrial environment. We present a status report at 
the intersection between fundamental and applied research in surface 
science. We focus on the use of ARPES characterization in novel materials 
close to applied research and the functionality of x-ray analysis in PEEM 
and spectroscopy for chemical analysis. 

3:40pm 2D+AS+EM-ThA-5 Epitaxial Growth and Electronic States of 
Ultrathin Bi (111) Films on Insb (111)B: Evidence of Inversion Symmetry 
Breaking via Film-Substrate Interactions, Hadass S. Inbar, J. Dong, A. 
Engel, C. Dempsey, Y. Chang, University of California Santa Barbara; A. 
Fedorov, Advanced Light Source, Lawrence Berkeley National Laboratory; C. 
Palmstrom, University of California Santa Barbara 

Quantum size effects in bismuth films have been the focus of the scientific 
community for decades. The spin–split Rashba surface states and large 
mass anisotropy in surface state valleys have made Bi films a promising 
system for future applications in spintronics and valleytronics. Moreover, in 
the field of topological materials, the Bi (111) bilayer (BL) is predicted to 
behave as a quantum Hall spin insulator[1]. Along the Bi (111) step edges, 
1D helical modes were observed[2], an ingredient in one proposed 
platform to construct Majorana zero modes[3]. However, the synthesis of 
continuous ultrathin (<6 BL) Bi (111) epitaxial films on semiconducting 
substrates has remained a materials challenge. We report a study of 
ultrathin large-area Bi (111) layers grown on InSb (111)B substrates by 
molecular beam epitaxy and in-vacuo transferred for scanning tunneling 
microscopy and synchrotron-based angle-resolved photoemission 
spectroscopy. We show that large-area single-domain ultrathin Bi films can 
be stabilized through strong film-substrate interactions. Our study follows 
the evolution of tensile strain in the films, which is predicted to lead to a 
semimetallic to semiconducting transition. With decreasing film thickness 
from 13 to 1 BL, we quantify the confinement-induced shifts in the bulk 
band structure and trace the quantum well energy levels with a phase shift 
accumulation model. Significant substrate-film interactions breaking 
inversion symmetry affect the surface state dispersion leading to a surface 
state degeneracy which allows us to assign the topological order in Bi(111) 
thin films. The findings of this study offer a new route for epitaxial growth 
and integration of band-engineered Bi films with III-V substrates. 

[1] Murakami, S. (2006). Quantum spin Hall effect and enhanced magnetic 
response by spin-orbit coupling. Physical Review Letters, 97(23), 236805. 
 
[2] Drozdov, I. K., Alexandradinata, A., Jeon, S., Nadj-Perge, S., Ji, H., Cava, 
R. J., ... & Yazdani, A. (2014). One-dimensional topological edge states of 
bismuth bilayers. Nature Physics, 10(9), 664-669. 
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[3] Jäck, B., Xie, Y., Li, J., Jeon, S., Bernevig, B. A., & Yazdani, A. (2019). 
Observation of a Majorana zero mode in a topologically protected edge 
channel. Science, 364(6447), 1255-1259. 
 

4:00pm 2D+AS+EM-ThA-6 Band Modulations: Revealing Moiré Effects in 
Twisted Bilayer 2D Materials, Ryan Muzzio, Carnegie Mellon University; A. 
Jones, P. Majchrzak, Aarhus University, Denmark; H. Martins, S. Singh, 
Carnegie Mellon University; C. Jozwiak, A. Bostwick, E. Rotenberg, 
Lawrence Berkeley National Laboratory; P. Hofmann, Aarhus University, 
Denmark; S. Ulstrup, aarhus University, Denmark; J. Katoch, Carnegie 
Mellon University 

Two dimensional (2D) materials are a wonderful template to explore novel 
quantum phenomena in the ultra thin limit.They can be exfoliated to the 
desired thickness, stacked with other 2D flakes, and be integrated in device 
fabrication for electrical measurement.The addition of a twist angle 
between stacked 2D flakes produces a moiré lattice which can lead to 
drastic changes in their physical properties.For the case of bilayer 
graphene, introducing a ~1.1 degree rotation (the magic angle) leads to a 
low temperature superconducting state[1].This remarkable transport result 
has been explained via band structure theory and experiment[2,3,4] of the 
hybridization of the out-of-plane Pi orbitals of the graphene layers which 
forma weakly dispersing state at the fermi level.Beyond graphene, twist-
angle dependent bilayer transition metal dichalcogenides (TMDCs) also 
display extraordinary novel moiré physics[5,6].In this presentation, we will 
discuss our ongoing analysis of nano- and micro-focused angle resolved 
photoemission spectroscopy (ARPES) performed on twisted bilayer 
graphene and TMDCs systems placed on hBN.We demonstrate, over a wide 
range of twist angles, the effect of the moiré lattice and proximity effects 
on the band structure by investigating the effective masses, band 
positionings, and location of the moiré bands across four TMDC 
heterobilayers.Our work demonstrates the tunability of the electronic 
properties in twisted 2D bilayers and the power of ARPES to provide a 
momentum-resolved view of their electronic structure. 
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