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2:20pm 2D+MI-TuA-1 Strategies for Controlling Structure and Magnetic 
Texture in 2D Magnets, Frances Ross, MIT; J. Klein, MIT, USA INVITED 

Electronic devices that incorporate two dimensional (2D) materials often 
require contacting or patterning the 2D layer for their fabrication. This is 
particularly important when we aim to build exciting new nanoscale 
magneto-electric devices based on 2D magnetic materials. CrSBr is such a 
2D magnet that shows stability in air, giving this material a key advantage 
in practical device fabrication compared to other, less stable 2D magnets. 
Here we discuss strategies for controlling the structure and properties of 
CrSBr and related 2D magnets at the local, nanoscale level. We approach 
this via transmission electron microscopy, based on promising results for 
other 2D materials. We first discuss local control of structure. We find that 
electron beam irradiation in a scanning transmission electron microscope 
(STEM) induces a surprising structural change, where Cr atoms migrate into 
the van der Waals gap to create a new phase with layer direction (and, in 
theory, magnetization) perpendicular to the initial layers. The ability to 
modulate the magnetization direction deterministically is of great interest 
for quantum devices. Furthermore, since we find that defects in this 
material can be optically active and correlated with magnetic order and 
phases, the ability to use STEM to control individual defects will ultimately 
help to achieve precise control of the material’s properties. We next 
discuss strategies for contacts. For other 2D materials, the 2D/3D contact 
resistance is known to improve when the contact layers have fewer grain 
boundaries. We therefore focus on epitaxial growth of metals and other 3D 
crystals onto the 2D surface. We show how in situ TEM imaging helps to 
clarify the growth mechanisms and interface structures formed during 
single crystal or heterostructured metal growth on graphene, hBN and 
transition metal dichalcogenides. We then explore how nucleation and 
epitaxy phenomena play out for pristine and patterned CrSBr and other 2D 
magnets. Overall, we conclude that atomic level structural and chemical 
modification are crucial for understanding properties and designing devices 
that use the exciting properties of the new 2D magnets. We suggest that 
rapidly advancing in situ TEM instrumentation promises exciting future 
opportunities where nanoscale growth and patterning create complex 
devices based on 2D materials. 

3:00pm 2D+MI-TuA-3 Bidirectional Phonon Emission in van der Waals 
Heterojunctions During Ultrafast Charge Transfer, Aditya Sood, Stanford 
University 

Photoinduced charge transfer in van der Waals heterostructures occurs on 
ultrafast timescales of order 100 fs, despite the weak interlayer coupling 
and momentum mismatch. Little is understood about the microscopic 
mechanism behind this fast process and the role of the lattice in mediating 
it. Here, using femtosecond electron diffraction, we directly visualize lattice 
dynamics in photoexcited heterostructures of WSe2/WS2 monolayers. 
Following selective excitation of WSe2, we measure unexpectedly 
concurrent heating of both WSe2 and WS2 on a 1 picosecond timescale, 
corresponding to an "apparent" interlayer thermal conductance that is 
>100x larger than that due to phonons alone. Using first-principles 
calculations, we identify a fast channel, involving an electronic state 
hybridized across the heterostructure, enabling phonon-assisted interlayer 
transfer of photoexcited electrons. Phonons are emitted in both layers on 
femtosecond timescales via this channel, consistent with the simultaneous 
lattice heating observed experimentally. Taken together, our work 
indicates strong electron-phonon coupling via layer-hybridized electronic 
states – a novel route to control energy transport across atomic junctions. 

4:20pm 2D+MI-TuA-7 Understanding Structural, Chemical, and Number of 
Layer-Dependent Properties in 2D Lateral and Vertical Structures for 
Subsequent Optical Measurements, U. Kaiser, Michael Mohn, University 
of Ulm, Germany INVITED 

Properties of 2D materials can manifest at very different length scales. 
Charge density waves, magnetic ordering, inter- and intralayer excitons are 
studied also to understand their atomistic origin. Moreover, starting from 
exciting properties of low-twist angle graphene, twisted transition metal 
dichalcogenides are now explored, whereby the future of moiré 
superlattices is also dependent on reliable twist angle control. In addition, 
interfaces of transition metal dichalcogenide heterostructures such as 

Janus monolayers or lateral heterostructures have potential applications in 
optoelectronics, however very critical for carrier and exciton transport is 
that they are atomically sharp. 

Here we use the low-voltage- spherical and chromatic aberration-corrected 
transmission electron microscope to measure and introduce structural and 
chemical variations in free-standing 2D materials on the atomic scale. In-
situ and ex-situ optical measurements are performed and together with 
quantum-mechanical calculations their atomic-structure-based properties 
are understood. 

We first report on advances in TEM sample preparation both for oxygen-
sensitive TMDs as well as describe our sample platform to relate atomic 
defects in 2D materials produced by TEM with subsequent measurements 
in stacked devices. Then we describe studies on electron-beam-induced 
defects and observe the migration paths and associated property changes 
in a variety of single and few-layered free-standing structures of transition 
metal di-chalcogenides (TMDs) and transition metal phosphorus tri-
chalcogenides (TMPTs). We also investigate the twist-angle-dependent 
moiré pattern formation in bilayers of TMDs by theoretical prediction-
followed TEM experiments. From the comparison of monolayer, bi-layer 
and 2° twisted bilayer experimental images, we determine twist-angle-
induced inhomogeneous stacking-related localized strain in the layers as 
well as the twist-angle-induced changes of the interlayer excitons located 
in the low-loss range of the EELS spectrum. We further report on the 
number of layer-dependent electronic properties of Pt-dichalcogenide 
family. We also show proof-of-principle experiments in which we transfer 
electron-exposed TMD flakes from a TEM grid to arbitrary substrates and 
measure the produced defects in photoluminescence and transport 
measurements. Moreover, the investigated lateral heterostructures show 
near-atomically sharp junctions with a typical extent of 3 nm for the 
covalently bonded MoSe2-WSe2 interface, determined by high-resolution 
transmission electron microscopy. This explains the considerably narrowed 
optical transition linewidth in the photoluminescence, reflectance contrast 
and Raman spectroscopy. 

5:00pm 2D+MI-TuA-9 Determination of Band Offsets in Semiconductor 
Heterostructures (2D/3D) by Using XPS, Mohamed Nejib Hedhili, . NG, B. 
Ooi, King Abdullah University of Science and Technology, Saudi Arabia 

Electrical and optical properties of heterojunction semiconductors are 
heavily influenced by the relative alignment of their energy band edges at 
the interface [1]. That is why the knowledge of this alignment is crucial for 
the design of heterostructure devices. In this regard, high-resolution X-ray 
photoemission spectroscopy (HR-XPS) has been shown to measure the 
valence band offset of heterojunction semiconductors quite accurately [2]. 
In this report, we present a study devoted to the characterization of 2D/ 3D 
heterojunction semiconductor materials using a myriad of techniques 
including HR-XPS, scanning transmission electron microscopy (STEM), 
atomic force microscopy (AFM), micro-Raman, absorbance, and 
microphotoluminescence spectroscopy. 

The samples for this study were prepared by depositing an epitaxial GaN 
(In0.15Al0.85N) thin layer with molecular beam epitaxy (MBE) on chemically 
vapor deposition (CVD) grown single-layer (SL) MoS2/c-sapphire (WSe2/c-
sapphire) substrates. The formation of SL of MoS2 (WSe2)was crucial to 
device properties and hence was confirmed by using both STEM and AFM 
techniques. HR-XPS analysis of samples was performed in two-steps to 
measure the valence band discontinuity for GaN (In0.15Al0.85N) / SL of MoS2 
(WSe2) heterojunction interface. In first step, the core level binding 
energies with respect to the valence band maximum in both GaN 
(In0.15Al0.85N) and MoS2 (WSe2) bulk films were measured. Second, the 
subsequent measurements on the separation between Ga (In) and Mo (W) 
core levels for GaN (In0.15Al0.85N) thin layer grown SL-MoS2 (SL-WSe2)was 
measured. The valence band and conduction band offset values are 
determined. 

The band alignment parameters determined here provide a route toward 
the integration of group III nitride semiconducting materials with transition 
metal dichalcogenides (TMDs) for designing and modeling their 
heterojunction-based electronic and optoelectronic devices. 
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5:20pm 2D+MI-TuA-10 Investigation of a Novel Layer-by-Layer Growth 
Methodology for Surface Metal-Organic Frameworks, Nicholas Stucchi, 
Clarkson University 

The fabrication of highly ordered and crystalline surface-confined metal-
organic frameworks (SURMOFs) has garnered interest in applications such 
as catalysis, gas storage, and gas separation. At present, the state of the art 
of SURMOF fabrication is a layer-by-layer (LBL) growth, wherein a 
functionalized substrate undergoes sequential immersions in solutions of 
the desired metal or ligand. This LBL strategy is commonly performed using 
gold substrates modified with carboxylate-terminated self-assembled 
monolayers (SAMs) which act as an initial nucleation site for the metal 
cluster. Careful control over deposition conditions and reaction times 
results in the formation of crystalline SURMOFs with tunable thicknesses. 
However, this technique is limited to substrates that can undergo the 
necessary SAM functionalization as well as being highly sensitive to the 
deposition conditions. I will discuss the development of a new LBL 
methodology that utilizes a pre-formed covalent-organic framework (COF) 
on the surface of highly oriented pyrolytic graphite (HOPG) as the template 
for SURMOF growth. The COF template should have the same geometry 
and a lattice parameter close to that of the desired SURMOF to minimize 
the strain of the first few layers. As such, COF-366-Zn was chosen as the 
template for UiO-67, which has a 3% lattice mismatch between the COF 
template and MOF. The COF was reacted with isonicotinic acid (INA) in 
which the pyridine axially coordinates to the zinc centers of the COF and 
the exposed carboxylate moieties of the INA serve as nucleation sites for 
the zirconium acetate clusters of UiO-67. The SURMOF was formed 
following several sequential reactions in the cluster and benezene-1,4-
dicarboxylic acid (BDA) ligand solutions. The COF and initial INA binding will 
be characterized by scanning tunneling microscopy (STM) and Fourier-
Transform Infrared (FTIR) spectroscopy. Atomic force microscopy (AFM) 
will be used to characterize the LBL growth of UiO-67. The crystallinity of 
the SURMOF will be determined using diffraction techniques. 
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