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8:00am QS+AP+EM+MN+NS+SS-ThM-1 Effects of Environmental 
Radioactivity on Superconducting Qubits, L. Cardani, Ambra Mariani, 
Istituto Nazionale di Fisica Nucleare, Italy INVITED 

Environmental radioactivity was recently discovered as a potential limit for 
superconducting quantum bits. 

We review recent works proving that ionizing radiation lowers the 
coherence of singe qubits and induces correlated errors in qubits arrays. 
We also present preliminary studies showing that operating qubits in a low-
radioactivity environment improves their performance. These results 
fuelled the interest of several European and US groups in further 
investigating and mitigating radioactivity for next-generation quantum 
processors. 

Using radioactivity measurements and simulations, we estimated the 
separate contribution of “far” radioactive sources (cosmic rays and 
laboratory radioactivity) and close materials contamination (chip holder, 
magnetic shield, …) on a typical chip, focussing on a qubit prototype 
developed within the SQMS center. We present such contributions and 
discuss the possibility of mitigating them in "standard" qubit laboratories 
or, eventually, in deep underground facilities. 

8:40am QS+AP+EM+MN+NS+SS-ThM-3 Dynamics of a Dispersively 
Coupled Transmon in the Presence of Noise from the Control Line, Antti 
Vaaranta, Bluefors Oy, Finland; M. Cattaneo, University of Helsinki, Italy; R. 
Lake, Bluefors Oy 

In this talk we present theoretical results from a complete description of 
transmon qubit dynamics in the presence of noise introduced by an 
impedance-matched resistor (50 Ohm) that is embedded in the qubit 
control line, acting as a noise source [1]. We derive a model to calculate the 
qubit decoherence rate due to the noise emanating from this noise source 
[2]. The resistor is treated, using the Caldeira-Leggett model, as an infinite 
collection of harmonic LC-oscillators making it a bosonic bath [3]. To obtain 
the qubit time evolution affected by this remote bath, we start with the 
microscopic derivation of the Lindblad master equation using the 
dispersive Jaynes-Cummings Hamiltonian with added inductive coupling to 
the bath. To solve the resulting master equation, we transform it into a 
block diagonal form by exploiting its underlying symmetries following Ref. 
4. The block diagonalization method reveals that the long time 
decoherence rate is given by the slowest decaying eigenmode of the 
Liouvillian superoperator. Moreover, when the readout resonator is in the 
equilibrium thermal state, the rate of exponential decoherence of the qubit 
is almost exactly exponential for all times with the predicted rate given by 
the slowest decaying eigenmode. We also study how the decoherence rate 
depends on the temperature of the noise source and explore the strong 
and weak dispersive coupling regimes. The model captures the often used 
dispersive strong limit approximation of the qubit decoherence rate being 
linearly proportional to the number of thermal photons in the readout 
resonator. However, in the dispersive weak limit we predict remarkably 
better decoherence rates. The model parameters are completely 
determined by the values of the circuit components, allowing for the exact 
study of the dynamics on the level of each individual circuit element. 
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9:00am QS+AP+EM+MN+NS+SS-ThM-4 Accurate Microwave 
Characterization for Superconducting Quantum Technology, Slawomir 
Simbierowicz, Bluefors Oy, Finland 

Recent breakthroughs in quantum technology have highlighted a need for 
methods for accurate characterization of cryogenic microwave devices at 

millikelvin temperatures. In this two-part talk, I will highlight recent 
progress on microwave measurements at the quantum device reference 
plane including: (1) system noise characterization of amplifier chains, and 
(2) calibrated S-parameters of qubit drive line components.In the first part, 
I will discuss an impedance-matched variable temperature noise source 
which can be installed in a coaxial line of a cryostat. Using the method of 
hot/cold source with many input noise temperature points, the system 
noise temperatures of qubit readout amplifier cascades can be determined. 
I present measurement results in terms of added noise in Kelvins or 
photons from a four-wave (4WM) mixing traveling wave parametric 
amplifier (TWPA) [1], a Josephson parametric amplifier [2], 3WM TWPA, 
and high electron mobility transistor amplifiers [1].In the second part of the 
talk, I will present measurements of the 1-port S-parameters of qubit drive 
line components using a data-based short-open-load calibration at a 
temperature of 30 mK [3]. The measurement enables us to model 
systematic errors in qubit state preparation due to non-idealities in qubit 
control lines such as impedance mismatch. We model the results using a 
master equation simulation of all XY gates performed on a single qubit. Our 
work directly addresses the gap between electrical engineering parameters 
of individual measurement components and performance of the quantum 
device itself. 
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9:20am QS+AP+EM+MN+NS+SS-ThM-5 Improving Qubit Performance 
Through Engineering of the Substrate-Josephson Junction Interface, 
Cameron Kopas, H. Cansizoglu, R. Cochrane, B. Ercan, Rigetti Computing; D. 
Goronzy, C. Torres-Castanedo, Northwestern University; J. Oh, Ames 
Laboratory; A. Murthy, Fermi Lab; E. Lachman, Rigetti Computing; A. 
Romanenko, A. Grassellino, Fermi Lab; M. Kramer, L. Zhou, Ames 
Laboratory; M. Bedzyk, Northwestern University; J. Mutus, Rigetti 
Computing; M. Hersam, Northwestern University; K. Yadavalli, Rigetti 
Computing INVITED 

The performance of a superconducting qubit is often limited by dissipation 
and two-level systems (TLS) losses. The dominant sources of these losses 
are believed to come from interfaces and surfaces, likely as a result of 
fabrication processes, materials, or atmospheric exposure. We show that 
certain chemical surface treatments can be used to modify the silicon 
surface before Josephson junction deposition, reducing the number of 
strongly-coupled TLS, and improving T1. While identifying specific 
microscopic sources for loss and TLS is still an open question, targeted 
characterization of test structures will show which physical changes 
correlate with performance improvements. We report chemical, structural, 
and low-temperature microwave characterization of superconducting 
qubits and films fabricated with different Si surface treatments. 

11:00am QS+AP+EM+MN+NS+SS-ThM-10 Design and Optimal Control of 
Superconducting Qubits to Achieve Quantum Speed Limits, Meenakshi 
Singh, Colorado School of Mines, USA INVITED 

Fast two-qubit entangling gates are essential for quantum computers with 
finite coherence times. The finite interaction strength between qubits 
introduces a theoretical speed limit on the speed of these two-qubit 
entangling gates. This speed limit has been analytically found only for a 
two-qubit system under the assumption of negligible single qubit gate 
times. Here, we demonstrate such a speed limit experimentally using 
optimal control on two superconducting transmon qubits with a fixed 
capacitive coupling and finite single qubit gate times. Furthermore, we 
investigate the effect of additional couplings on the speed limit, both 
through introduction of an ancillary qubit as well as through utilization of 
higher transmon energy states. Finally, we discuss the generalization to 
many qubit systems where properly leveraging all available couplings can 
provide dramatic speedups. 
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11:40am QS+AP+EM+MN+NS+SS-ThM-12 Atomic Scale Processing for 
Quantum Computing, Harm Knoops, Oxford Instruments Plasma 
Technology, Netherlands INVITED 

With the increasing technological readiness of quantum technology (QT) 
the field has to start focussing on scalable fabrication methods for 
quantum bits (qubits) and quantum circuits. This contribution will focus on 
the enabling role atomic scale processing (ASP) methods such as atomic 
layer deposition (ALD) and atomic layer etching could play in scaling of QT. 
The main focus will relate to superconducting qubits and processing of 
superconducting nanolayers. 

Superconducting nanolayers (metals, metal-nitrides) are required for 
various roles in QT including use in resonators, single-photon detectors, 
and interconnects.1 The electrical contacts needed to control the qubits will 
require non-planar connectivity using superconducting 
interconnects.2Adequate routes for fabrication of planar superconducting 
layers exist, but for 3D interconnects or through-silicon vias (TSVs), the 
excellent conformality of ALD nanolayers could be essential. Although for 
resonators conformality is not a challenge, ALD’s thickness control and 
uniformity should allow high-quality resonators with low spread in 
properties. For these superconducting nanolayers, metal-nitride 
compounds have been identified as particularly promising since they 
exhibit limited surface oxidation (compared to pure metals such as Nb), 
combined with relatively high critical temperature (Tc) for 
superconductivity (e.g., as compared to Al). Despite the challenges that the 
synthesis of high-quality nitrides pose, plasma ALD has demonstrated the 
capability to deposit high-quality nitrides (e.g., low O content, high 
electrical conductivity).3 Furthermore, substrate-biased plasma-ALD offers 
unique opportunities to obtain and tune high-quality nitrides.4 For removal 
of surface oxides or smoothing of resonator surfaces and interfaces, 
approaches combining ALD and ALE could be of interest.5 Both ALD and ALE 
are envisaged to be key tools to allow scaling of these devices and advance 
the QT field. 
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