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2:20pm LS1+2D+AS+EM+QS+SS-TuA-1 In-situ/Real-time XPS Study of 
Electrochemical Reactions in All-solid-state Thin-film Lithium-Ion 
Batteries, Takuya Masuda, National Institute for Materials Science, Japan
 INVITED 

All-solid-state lithium-ion batteries (ASSLIBs) are one of the most promising 
next generation rechargeable batteries because of their very high safety 
and reliability. Understanding of the mechanism of electrochemical 
reactions and related physicochemical phenomena is very important for 
improving cell performances and durability. Application of ex-situ 
techniques to multiple samples disassembled from cells after certain 
charge/discharge cycles often results in misinterpretation due to the 
variation of samples and undesired side effects during sample transfer 
between battery test environment and characterization apparatus. Thus, 
various in-situ techniques which can be applied to the same position of the 
same sample kept at a certain charge/discharge state have been developed 
for hierarchical understanding of a series of electrochemical events 
interplaying with each other. X-ray photoelectron spectroscopy (XPS) is a 
powerful tool for analyzing the composition of reaction products, chemical 
state, and electronic structure of sample surfaces. By tuning the energy of 
incident x-rays, it also enables us to conduct the depth-resolved analysis of 
surfaces and interfaces including those buried with solid thin films. 
Recently, we developed an in-situ XPS apparatus equipped with a bias 
application system and a vacuum suitcase for sample transfer,[1] and 
applied it to the electrochemical lithiation/delithiation reactions of an 
amorphous Si thin film electrode sputter-deposited on a solid electrolyte 
sheet.[2] The chemical state of Si electrode changing during 
lithiation/delithiation processes was successfully tracked by sequential XPS 
measurements in the regions of Li 1s, C 1s, O 1s, and Si 2p. Not only lithium 
silicide (LixSi) which reversibly responds to the lithiation/delithiation but 
also irreversible species such as lithium oxides, lithium silicates and lithium 
carbonates were formed due to the lithiation of the Si electrode. 
Moreover, a rapid spectral change attributable to the phase transition of a 
crystalline LixSi to an amorphous phase was observed in the successive 
delithiation after preceding lithiation up to certain level. Based on the state 
of charge, Li content x in LixSi, and positions of XPS peaks, we summarized 
the lithiation/delithiation mechanism in Si electrodes. Further details will 
be presented. 

[1] R. Endo, T. Ohnishi, K. Takada, T. Masuda, Journal of Physics 
Communications, 2021, 5, 015001. 
 

[2] R. Endo, T. Ohnishi, K. Takada, and T. Masuda, J. Phys. Chem. Lett. 2020, 
11, 6649−6654. 

3:00pm LS1+2D+AS+EM+QS+SS-TuA-3 Interaction of Molecular Nitrogen 
with Vanadium Oxide in the Absence and Presence of Water Vapor at 
Room Temperature: Near-Ambient Pressure XPS, S. Nemsak, Lawrence 
Berkeley National Laboratory; Kabirat Balogun, P. Chukwunenye, T. 
Cundari, P. Bagus, J. Kelber, Department of Chemistry, University of North 
Texas 

Interactions of N2 and H2O at transition metal oxide surfaces are of 
fundamental interest for gaining insight into electrocatalytic nitrogen 
reduction reaction (NRR) mechanisms. N2/H2O interactions at the 
polycrystalline vanadium oxide/vapor interface were monitored at room 
temperature and N2 partial pressures between 10-9 Torr and 10-1 Torr using 
Near-Ambient Pressure X-ray Photoelectron Spectroscopy (NAP-XPS). The 
oxide film was predominantly V(IV), with significant V(III) and V(V) 
components. Such films have been previously demonstrated to be NRR 
active at pH 7. There is little understanding, however, of the detailed 
nature of N2-surface interactions. XPS measurements were acquired at 
room temperature in environments of both pure N2 and equal pressures of 
N2 and H2O vapor, up to a N2 partial pressure of 10-1 Torr. In the absence of 
H2O, broad N 1s features were observed at binding energies of 401 eV and 
398.7 eV with relative intensity ratios of ~ 3:1, respectively. These features 
remained upon subsequent pumpdown to 10-9 Torr, indicating that 
adsorbed nitrogen is stable at room temperature in the absence of 

equilibrium with gas phase N2. In the presence of equal pressures of N2 and 
H2O vapor, the 401 eV N 1s feature was reduced in intensity by ~ 50% at 10-

1 Torr N2 partial pressure, with the feature at 398.7 eV binding energy 
barely observable. DFT calculations show that the above NAP-XPS data 
demonstrating stable N2-surface binding in the absence of N2 overpressure 
are consistent with N2 binding at V(IV) or V(III) sites, but not at V(V) sites, 
and further show that N2/H2O binding is competitive. SCF-HF calculations 
suggest that the two N 1s XPS features correspond to "shake" and normal 
transitions at 401 eV and 398.7 eV, respectively, for N2 bonded end-on to 
the surface. The shake feature involves a charge transfer from V 3d to N2 
pi* in addition to N 1s ionization. The difference in binding energies of the 
two features, ~ 2.3 eV, strongly suggests N2 -V(III) binding. The data 
presented demonstrate the ability of NAP-XPS, in concert with theory, to 
provide atomic-level insight concerning interfacial reactions relevant to 
electrocatalysis. 
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3:20pm LS1+2D+AS+EM+QS+SS-TuA-4 Catalysts Caught in the Act: an 
Operando Investigation of Copper during CO2 Hydrogenation, Elizabeth 
Jones, University of Oxford, UK 

Amongst the foremost challenges in mitigating global warming are 
replacing fossil fuels with renewable alternatives, and storing/using carbon 
captured from CO2-emitting processes. Methanol production by CO2 
hydrogenation promises a possible solution to both of these issues, 
particularly if H2 can be obtained through water electrolysis. When the 
resulting methanol is used as a fuel an equivalent amount of CO2 is 
released making it a “net-zero” fuel alternative. CO2 hydrogenation is 
performed industrially using a CO2/H2 mix at 200-300oC, 50-100 bar with a 
Cu-based catalyst, and the addition of CO is known to increase the 
methanol yield. However, mechanistic understand of this reaction and the 
role played by CO remains limited. Soft X-ray spectroscopies can provide 
details on the chemical state of copper to uncover the chemistry behind 
this reaction, however the typical requirement for measurement under 
high vacuum constrains how realistic these studies can be. There has been 
much recent development on improving operando techniques to enable 
heterogeneous catalytic reactions to be studied under realistic pressure 
conditions (E. S. Jones et al., in Ambient Pressure Spectroscopy in Complex 
Chemical Environments, 2021, ACS Symposium Series, vol. 1396, ch. 8, 175-
218). A promising approach is to use an environmental cell which encloses 
the desired gas and separates it from the high vacuum environment, using 
an X-ray transparent window (R. S. Weatherup, J. Phys. Chem. Lett., 2016, 
7, 1622-1627). 

Using a custom-designed high pressure environmental cell we have studied 
model Cu catalysts using operando NEXAFS in total electron yield mode up 
to pressures of 1 bar and temperatures of 200oC. A thin Cu film was 
deposited onto a Si3N­4 membrane which acted to seal the high pressure 
gas within the cell and as a transparent window for incident X-rays. The aim 
of the study was to investigate how the Cu oxidation states varied when 
exposed to H2 and CO2 in different sequential order and how the 
introduction of CO can further influence the chemical state of Cu. It was 
found that H2 can provide a protective barrier to oxidation from CO2 when 
dosed first, however if H2 was added after CO2 it is unable to return the 
surface to its metallic state where CO is then required for reduction. This 
offers an insight into why CO plays an important role in the industrial 
production of methanol. Additionally, advances in sealing of the 
environmental cell enabled high pressures to be achieved at elevated 
temperatures, allowing this approach to be extended to more industrially-
relevant conditions. 
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