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8:20am AP+2D+AS+EM+PS+SS+TF-MoM-1 Imperfectly Perfect Materials 
and/or Processes as a Route for ASD, Christophe Vallee, SUNY POLY, 
Albany; M. Bonvalot, M. Jaffal, T. Yeghoyan, University Grenoble Alpes, 
LTM, CNRS, France; N. Posseme, R. Gassilloud, T. Chevolleau, CEA/LETI-
University Grenoble Alpes, France INVITED 

In recent years, many strategies have been presented to selectively deposit 
a material on a specific surface (area selective deposition), or space 
direction (topographically selective deposition). Whatever the selective 
process developed to this end (inherent delay, surface inhibition, surface 
activation, super-cycles...), it is expected that a perfect material is perfectly 
deposited on the surface at stake. However, this most often implies that 
some imperfect material is thereby deposited on surfaces where no growth 
is expected. Taking this logic a little further ahead, we can even imagine 
that it may not be at all necessary to develop perfect ALD processes to 
achieve ALD-based selective deposits. 

In this presentation, we will show how imperfect ALD processes can be 
developed by working out of the ideal precursor ALD window or regime, to 
adequately lead to ASD processes. We will also show that the requirements 
of an ideal growth inhibition of no-growth surfaces can be successfully 
circumvented for ASD processes. Indeed, the simultaneous deposition of a 
same material on two differing substrates can lead to inherent 
discrepancies in the materials quality, that can be advantageously taken 
into consideration in the development of a localized bottom-up growth 
strategies by adding a selective etching step. 

9:00am AP+2D+AS+EM+PS+SS+TF-MoM-3 Area Selective Deposition on 
EUV Photoresist, Rosanna Robert, SUNY College of Nanoscale Science and 
Engineering; H. Frost, K. Lutker-Lee, TEL Technology Center, America, LLC, 
USA; C. Vallée, SUNY College of Nanoscale Science and Engineering 

Area selective deposition (ASD) is a key process required for the next 
generation of nanotechnology. ASD utilizes surface chemistry and reaction 
modifications to promote growth on one of two different materials. When 
applying an ASD process to a patterned wafer with both materials exposed, 
we can selectively grow a film on one surface while blocking growth on the 
other surface (known as the nongrowth area). One application for ASD is 
ultra-thin extreme ultraviolet (EUV) photoresist repair to enable continued 
pitch scaling in the Back End of Line1. Pattern transfer fidelity depends on 
initial line edge roughness (LER) and line width roughness (LWR) values of 
the EUV resist. Moreover, local critical dimension uniformity (LCDU) for <30 
nm critical dimension hole patterning also varies with the initial resist 
thickness2. In this project, we propose to develop an ASD on EUV resists 
before or alternatively during an etch process to improve LCDU and 
LER/LWR; in this case, the ASD is used as a corrective step. 

To develop an ASD process that is relevant to device manufacturing, we 
only consider the gases present on a plasma etch chamber as precursors 
for ASD. We utilize the plasma assistance of the etch chamber to develop 
an ASD process by Plasma enhanced chemical vapor deposition, rather 
than by the more commonly exploited atomic layer deposition. This is more 
challenging since radicals from precursor dissociation are known to be 
highly reactive on the surface. However, it was recently demonstrated the 
selective PECVD of a silicon film on SiON surfaces using SiF4/H2 plasma3. 

In this presentation, we will demonstrate ASD by PECVD on SnOx (a EUV 
resist material) vs SiO-based materials (underlayer) in a 300 mm plasma 
etch tool, and the impact of plasma precursors and parameters on 
selectivity. We will show that we can selectively deposit film on SnOx. 
Results on full wafers and patterned samples will be presented. Thanks to 
the use of an in-situ plasma diagnostic, such as optical emission 
spectroscopy, as well as of ex-situ surface diagnostics such as X-ray 
photoelectron spectroscopy and scanning electron microscopy, we will 
discuss the mechanisms inherent to the selective growth and discuss the 
impact of chemistry of neighboring materials and pattern density. 

1 J.Church, “Plasma based ASD for EUV resist defectivity reduction and 
process window Improvement” AVS (2021) Nov 2020 

2 B. Vincent et al, Proc. SPIE 11323, “Extreme Ultraviolet (EUV) Lithography 
XI,”1132326 (23 Mar 2020) 

3 G. Akiki et al, “Origin of area selective plasma enhanced chemical vapor 
deposition of microcrystalline silicon,” J. Vac. Sci Technol.A 39 (2021) 
013201 

9:20am AP+2D+AS+EM+PS+SS+TF-MoM-4 Impact of Post-Exposure 
Treatments on TMSDMA-Passivated SiO2 Surfaces, Anthony Valenti, C. 
Vallée, C. Ventrice, SUNY Polytechnic Institute, Albany; K. Tapily, K. Yu, S. 
Consiglio, C. Wajda, R. Clark, G. Leusink, TEL Technology Center, America, 
LLC 

As the scale of semiconductor devices continues to shrink, conventional 
approaches to fabrication such as photolithographic patterning are 
becoming limited in their ability to provide the precision and resolution 
required for smaller and smaller features. Over the last several years, a 
bottom-up and self-aligned patterning technique known as area-selective 
deposition (ASD) has been explored. With this technique, the deposition 
process is manipulated in such a way as to only promote growth on one 
type of surface on a patterned substrate. This is typically achieved by 
inhibiting specific surfaces through the selective chemisorption of 
molecules that are inert to the reactants used for growth of the material of 
interest. Aminosilane precursors such as N-(trimethylsilyl)dimethylamine 
(TMSDMA) are of recent interest due to their potential use in area-selective 
atomic layer deposition (AS-ALD). With their strong selective chemisorption 
on SiO2 surfaces versus Si and non-oxidized metal surfaces, these 
precursors can be used to block deposition of metals on SiO2 while not 
inhibiting growth on Si or metal surfaces. For aminosilanes to be used as 
inhibiting precursors in AS-ALD, the resulting layer must maintain its 
passivation throughout a dozen or more ALD cycles. This study investigates 
the impact of various common ALD co-reactant/post-exposure treatments 
on SiO2 surfaces passivated via exposure to TMSDMA, including ozone 
exposure, H2 plasma treatment, and H2 plasma treatment followed by H2O 
vapor exposure. This project also explores using a second inhibitor dosing 
via NF3 plasma treatment in order to fluorinate any nucleation sites left 
vacant on the SiO2 surface after TMSDMA exposure. These treatments 
were conducted on samples of TMSDMA adsorbed on Si(100) substrates 
with 1000 Å thick thermal oxide surfaces. Water contact angle 
measurements were taken of each sample to determine relative surface 
passivation of each sample and to monitor temporal degradation of the 
surfaces over a timescale spanning weeks. Angle-resolved X-ray 
photoelectron spectroscopy and attenuated total reflection/Fourier 
transform infrared spectroscopy were performed in order to determine the 
chemical state of each surface. Temperature programmed desorption 
measurements were conducted to assess the relative coverage of the 
inhibiting film on each sample and their stability at higher temperatures. 

9:40am AP+2D+AS+EM+PS+SS+TF-MoM-5 Area-Selective ALD Using Small 
Molecule Inhibitors of Different Sizes: Single and Sequential Inhibitor 
Dosing, Pengmei Yu, M. Merkx, I. Tezsevin, Eindhoven University of 
Technology, Netherlands; P. Lemaire, D. Hausmann, Lam Research Corp.; T. 
Sandoval, Federico Santa María Technical University, Chile; W. Kessels, A. 
Mackus, Eindhoven University of Technology, Netherlands 

Due to the continuous scaling of semiconductor device features, area-
selective atomic layer deposition (ALD) is gaining attention for enabling 
bottom-up fabrication with atomic-scale control. Area-selective ALD can be 
achieved by surface deactivation of the non-growth area using inhibitor 
molecules. Small molecule inhibitors (SMIs) are of great interest due to the 
vapor-phase application and corresponding industrial compatibility.[1] Our 
previous work established that SMIs block precursor adsorption by a 
combination of chemical passivation of surface sites and steric shielding.[2] 
In this contribution, we compared three SMIs of different sizes for SiO2 

inhibition on the Al2O3 surface, namely acetic acid (HAc), acetylacetone 
(Hacac), and 2,2,6,6-tetramethyl-3,5-heptanedione (Hthd), and explored 
sequential dosing of two different SMIs to increase the overall inhibitor 
packing. 

We first focused on the use of a single SMI and studied how the size 
influences their performance. By in-situ spectroscopic ellipsometry and 
infrared spectroscopy studies, it is observed that using either a smaller 
(HAc) or a larger (Hthd) SMI than Hacac[3] could improve SiO2 ALD 
inhibition. Density functional theory and random sequential adsorption 
simulations were performed to further understand experimental findings. 
We found that although both steric shielding and chemical passivation are 
required for effective precursor blocking by SMIs, neither of them plays a 
dominating role. As compared to Hacac, HAc performs better due to its 
small size, yielding denser packing and thereby a higher degree of chemical 
passivation. Hthd on the other hand, benefits from its bulkiness, resulting 
in a higher contribution from steric shielding. 
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In an effort to achieve a higher selectivity, we explored whether 
sequentially dosing of two different SMIs can lead to higher surface 
coverage and deactivation. It is found that enhanced precursor blocking of 
98.4 ± 0.2 % could be achieved by dosing HAc and Hthd sequentially, which 
is higher than either 96.0 ± 0.6 % by Hthd or 97.0 ± 0.5 %by HAc solely. 
Results for various combinations of inhibitors and sequences will be 
presented. 
 

In summary, this work illustrates that varying the size of SMIs could bring 
benefits from either higher steric shielding or chemical passivation 
components for improved precursor blocking performance. In addition, it is 
demonstrated that combination of SMIs could potentially be an effective 
strategy for achieving higher selectivity. 
 

[1] A.J.M. Mackus et al., Chem. Mater. 31, 2 (2019). 

[2] M.J.M. Merkx et al., J. Phys. Chem. C 126, 4845 (2022). 

[3] M.J.M. Merkx et al., J. Vac. Sci. Technol. A 39, 012402 (2021). 

10:00am AP+2D+AS+EM+PS+SS+TF-MoM-6 Role of Catalytic Surface 
Reactions During Area-Selective Tan ALD for Precursor Blocking Using 
Aniline Molecules, Marc Merkx1, I. Tezsevin, P. Yu, R. Heinemans, R. 
Lengers, E. Kessels, A. Mackus, Eindhoven University of Technology, 
Netherlands; T. Sandoval, Federico Santa Maria Technical University, Chile 

The semiconductor industry is running into significant issues regarding RC-
delays in state-of-the-art interconnect structures. A solution is to 
selectively deposit the transition metal nitride diffusion barrier on the 
dielectric via sidewalls but not at the bottom, known as a bottomless 
barrier structure.[1]. In this contribution, area-selective TaN ALD is 
investigated using aniline as a small molecule inhibitor (SMI),[2] with the 
focus on studying the catalytic surface reactions that take place on the 
metal non-growth area after aniline adsorption. 

Area-selective TaN ALD was achieved using a three-step (i.e. ABC-type) ALD 
cycle using: (A) aniline as SMI, (B) tert-
butylimidotris(dimethylamino)tantalum (TBTDMT) as the precursor 
molecule, and (C) an Ar-H2 plasma as the co-reactant. This process was 
found to selectively deposit TaN on dielectric surfaces (e.g. Al2O3 and SiO2) 
considering the metal surfaces (e.g. Co, Ru) as non-growth area. It was 
observed that the selectivity of the process is strongly dependent on the 
employed substrate temperature. At 175 °C only ~1 nm TaN can be 
deposited selectively, whereas by raising the substrate temperature to 300 
°C ~3 nm of selective TaN growth was achieved on Al2O3, with respect to Ru 
as the non-growth area. 

An explanation for the strong temperature dependence for the selectivity 
of this process could be the catalytic reactivity of the metal non-growth 
area. For example, through density functional theory (DFT) calculations, it 
was found that aniline can undergo a hydrogenolysis reaction on transition 
metal surfaces, where the amine group splits off as NH3 while benzene 
remains adsorbed on the surface. This reaction eliminates the NH2 groups 
from the surface that could otherwise interact with incoming precursor 
molecules.[3] Experimental and simulation results will be presented to 
provide insight into the role that catalytic surface reactions play during 
area-selective ALD on metal surfaces. 

[1] Merkx et al., Atomic Limits 7, (2022) 
https://www.atomiclimits.com/2022/04/18/ 

[2] Merkx et al., Chem. Matter 32, 7788-7795 (2020) 

[3] Merkx et al., Chem. Matter. 32, 3335-3345 (2020). 

10:40am AP+2D+AS+EM+PS+SS+TF-MoM-8 AVS Russell and Sigurd Varian 
Awardee Talk: Sequential Application of Two Inhibitors to Achieve Area-
Selective Atomic Layer Deposition of Dielectric on Metal, Tzu-Ling Liu23, 
M. Harake, S. Bent, Stanford University 

Area-selective atomic layer deposition (AS-ALD), which provides a bottom-
up approach to fabricate patterned structures, has been considered as a 
prospective solution to overcome the challenges in current semiconductor 
manufacturing processes. To enable more applications of AS-ALD, it is 
critical to expand the AS-ALD toolbox to different types of surfaces. 
Previous studies have successfully demonstrated selective deposition of 
dielectrics on the dielectric (DoD) regions of metal/dielectric patterns using 
alkanethiols and phosphonic acids as the inhibitors for metal surfaces. 

 
1 2021 TFD James Harper Awardee 
2 TFD James Harper Award Finalist 
3 AVS Russell and Sigurd Varian Awardee 

However, doing the reverse pattern transfer, i.e., selective deposition of 
dielectrics on the metal (DoM) regions, is less well-investigated because 
selective inhibitor deposition on dielectric over metal is more challenging. 
Taking organosilane, a common inhibitor choice for dielectric surfaces, as 
an example, it can also adsorb on metal substrates when native metal 
oxide is present. Hence, it is important to develop a strategy to protect 
metal surfaces from the adsorption of organosilane inhibitors for achieving 
AS-ALD of DoM. 

In this work, we demonstrate a two-step strategy to achieve selective 
deposition of DoM by using two different SAMs with orthogonal surface 
chemistry, i.e., one SAM preferentially adsorbs on the metal, which serves 
as a protector to prevent the adsorption of the other SAM onto the metal, 
and the other primarily adsorbs on the dielectric, which serves as an 
inhibitor for AS-ALD. We sequentially perform dodecanethiol (DDT) 
deposition on Cu surfaces, followed by octadecyltrimethoxysilane (OTMS) 
deposition on SiO2 surfaces. Since the Cu surfaces are protected by DDT in 
the first step, OTMS selectively forms a well-packed self-assembled 
monolayer (SAM) only on SiO2. With this strategy, we demonstrate AS-ALD 
of ZnO and Al2O3 on Cu (growth surface) over SiO2 (non-growth surface) 
after applying a thermal step to selectively remove DDT protector from Cu. 
The blocking results show that selectivity > 0.9 can be maintained after 35 
cycles of ZnO ALD (corresponding to 5.6 nm of ZnO on a reference native 
SiO2-covered Si substrate) and 15 cycles of Al2O3 ALD (corresponding to 1.4 
nm of Al2O3), respectively, using this sequential two-step SAM process. Our 
study helps expand the selective deposition toolbox and provide more 
possible applications for AS-ALD in next generation electronic devices. 

11:00am AP+2D+AS+EM+PS+SS+TF-MoM-9 Carborane Self-Assembled 
Monolayers for Area-Selective Deposition, Michelle Paquette, R. Bale, R. 
Thapa, S. Pinnepalli, University of Missouri-Kansas City; J. Bielefeld, S. King, 
Intel Corporation 

Area-selective deposition (ASD) is an important strategy in improving the 
fidelity of and/or reducing the complexity of current multi-pattern pitch-
division processes. An expanded palette of ASD materials and processes is 
needed. Boron carbide (BC) has been demonstrated to be a compelling 
candidate for low-k dielectric, etch stop, diffusion barrier, and patterning-
assist layers, due to its robust electrical, mechanical, and chemical 
properties, as well as unique etch chemistry. The molecular carborane 
precursor is of interest for BC-based self-assembled monolayers (SAMs). 
This is a symmetric twelve-vertex molecule, with many available and 
typically sublimable derivatives. For SAM applications, carborane stands 
out in that its 3D symmetry allows for the formation of well-ordered layers, 
and the termination of its vertices by labile H atoms allows for cross-linking 
with a variety of mechanisms including heat, plasma, and radiation (e.g., 
UV, e-beam). Carborane SAMs can conceivably fulfill various roles in ASD 
schemes, including as an intrinsically selective functional dielectric layer 
(e.g., diffusion barrier), sacrificial layer (e.g., hard mask), direct-writeable 
layer, or blocking layer to facilitate the selective deposition of other 
materials. We describe progress in the deposition and characterization of 
carborane SAMs toward the development of a range of ASD schemes and 
applications. 

11:20am AP+2D+AS+EM+PS+SS+TF-MoM-10 Peter Mark Memorial Award 
Talk: Reactive Inhibitory Chemistries for Area Selective Depositions and 
Their Application in Back End of the Line Processes, Rudy Wojtecki4, IBM 
Almaden Research Center INVITED 

Area selective depositions (ASD) describe self-aligned processes where the 
chemical contrast of surfaces are exploited to selectively grow a film. ASD 
can be applied to a variety of fabrication schemes to improve tolerance to 
overlay errors in fully aligned via schemes or achieve device performance 
improvements by reduce resistance between interconnect levels in barrier-
less contacts that reduce stage delay. While ASD processes are accessible 
through a variety of methods – differences in surface reactivities between 
materials, self-assembled monolayers (SAMs) and small molecule 
inhibitors, to name a few – reactive organic inhibitors and their application 
in ASD processes will be described. Reactive inhibitor compositions can be 
selectively deposited on a metal portion of a pre-pattern surface, then 
undergo (i) a crosslinking reaction or (ii) further chemical transformations 
used to grow an inhibitory film to a desired thickness. Crosslinking of a 
monolayer film for ASD was demonstrated with the introduction of diyne 
moieties into a SAM composition, which is crosslinked under either UV or 
thermal treatment. These crosslinked monolayers were found to enhance 
selectivity in an ASD process and reduce defects on patterned substrates. 

 
4 Peter Mark Memorial Award Winner 
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With synthetic modifications to increase the length of the SAM, further 
reductions in defectivity was achieved as well as the ASD of TaN. Electron 
beam irradiation of aliphatic moieties are also known induce crosslinking. 
With the use of hydroxamic acid head groups the chemical contrast 
between exposed (crosslinked) and non-exposed regions could be 
significant enough to enable a patternable ASD process where, as the 
crosslink density increased the selectivity of the monolayer is further 
improved. These SAM chemistries require solution-based coating methods 
but the concept of a crosslinkable inhibitor could also be translated to a 
vapor phase process, demonstrated with propargyl amine and vinyl 
pyridine. To tailor inhibitor thickness in strategy (ii) chemically reactive 
surfaces were exploited where monomers are selectively attached to a 
metal surface then polymers grown in an area selective manner with 
tailorable thicknesses, demonstrated with a polynorbornene and 
poly(vinylpyridine). This tailorable thickness presents several advantages 
over monolayers – such as enabling ASD on patterns with topography 
(sharp corners & bends) or the control of lateral overgrowth. These 
reactive inhibitory chemistries demonstrate an inhibitory chemistry 
strategy for ASD and their use in back end of the line applications such as 
fully aligned via, barrier-less contacts or zero-line end extensions. 
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