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Bridging Gaps II: Single Atom Alloys and Desirable Defects 
Moderators: Rachel Farber, University of Chicago, Gareth Parkinson, TU 
Wien, Austria 

3:00pm HC+AS+SS-WeA-3 Atomic-Scale Structure-Function Relationships 
of Pt-based Copper Oxide Single-Atom Catalysts, Audrey Dannar, A. 
Schilling, G. Giannakakis, A. Therrien, E. Sykes, Tufts University 

Single-atom catalysts comprised of isolated metal atoms anchored on oxide 
supports have recently gained considerable attention for their potential to 
improve the activity and or selectivity of important industrial reactions. We 
have previously shown that single Pt atoms on a copper oxide thin-film are 
able to perform low-temperature CO oxidation without sintering, a 
common deactivation mechanism of single-atom catalysts. Using a 
combination of scanning tunneling microscopy, infrared and x-ray 
photoelectron spectroscopy, and temperature programmed desorption we 
elucidated the atomic-scale surface structure of these model catalysts and 
related that structure to catalytic function. We found that Pt atoms have a 
preferred binding site on the oxide surface and that they can oxidize CO, 
but not H2. These fundamental surface results were leveraged in the design 
of nanoparticle analogs that were active and selective for the preferential 
oxidation of CO. In order to extend this approach to bulk oxides we have 
begun characterizing the 111 facet of a Cu2O single-crystal which better 
mimics the Cu2O particles present in high surface area catalysts. Scanning 
tunneling microscopy images of the Cu2O(111) surface reveal atomic-scale 
structures that may be responsible for the reactivity observed in real 
catalysts. Low-energy electron diffraction patterns reveal reconstructions 
in the model catalyst surface induced by exposure to reducing or oxidizing 
conditions, which is important in terms of how the active sites, and their 
coordination to the oxide support evolve under relevant reaction 
conditions. Taken together, our thin-film and bulk copper oxide surfaces 
decorated with isolated Pt atoms provide useful model systems with which 
to parse out atomic-scale structure-function relationships that inform the 
rational design of novel catalysts. 

4:20pm HC+AS+SS-WeA-7 Comparison Study of Several Transition Metals 
on Two Different TiO2 Model Supports: Anatase TiO2 (101) and Rutile TiO2 
(110), Lena Puntscher, K. Daninger, P. Sombut, TU Wien, Austria; M. Meier, 
University of Vienna, Austria; M. Schmid, TU Wien, Austria; C. Franchini, 
Alma Mater Studiorum, Università di Bologna, Bologna, Italy; U. Diebold, G. 
Parkinson, TU Wien, Austria 

Single-atom catalysis (SAC) offers an opportunity to minimize the amount 
of precious catalyst material required for traditional heterogeneous 
catalysis and to “heterogenize” reactions presently requiring homogeneous 
catalysis; this would eliminate the problem of separating catalyst and 
product, while retaining the excellent selectivity and activity of 
homogeneous catalysts [1]. 

Unravelling how metal atoms bind to oxide supports is crucial for a better 
understanding of the SAC´s catalytic properties. Using STM and XPS, we 
compare the adsorption geometry and stability of several transition metals 
on TiO2 model supports: anatase TiO2(101) and rutile TiO2(110) [2] and the 
influence of water on the dispersion of these systems. 

This study points out the importance of metal-support interaction and the 
surprisingly different behaviour of the transition metals Pt, Rh, Ir and Ni on 
TiO2 model supports. 
 

  

1. Parkinson, G.S., Single-atom catalysis: how structure influences 
catalytic performance. Catalysis Letters, 2019. 149(5): p. 1137-
1146.  

2. Sombut, P., et al., Role of Polarons in Single-Atom Catalysts: 
Case Study of Me1 [Au1, Pt1, and Rh1] on TiO2 (110). arXiv 
preprint arXiv:2204.06991, 2022. 

  

4:40pm HC+AS+SS-WeA-8 Boron Effect Improves Catalytic Performance 
on Supported Pt/SiO2 Catalysts for Dry Reforming of Methane at Reduced 
Temperatures, Carly Byron, University of Delaware; M. Ferrandon, A. 
Kropf, Argonne National Laboratory; S. Bai, University of Delaware; M. 
Delferro, Argonne National Laboratory; A. Teplyakov, University of 
Delaware 

Metal nanoparticles supported on metal oxides are studied as catalysts for 
a variety of applications, most notably catalytic hydrocarbon reforming 
reactions. Platinum has shown to be a highly active catalyst for the dry 
reforming of methane (DRM), which converts CO2 and CH4 into “synthesis 
gas”, which can be further processed to produce biofuel. However, the 
DRM process requires further optimization before large scale use. Our prior 
studies have shown that boron has a positive effect on platinum/silica 
catalyst for butane dehydrogenation, due to the reduction in carbon 
contaminant (coke) on the surface and migration of carbon deposit away 
from platinum active sites. Based on these findings, Pt/B/SiO2 catalysts 
were prepared for DRM catalysis and compared with Pt/SiO2 catalysts 
without boron promotion. Both catalysts had similar concentrations of 
platinum, but the catalytic activity after 14 hours for boron-containing 
catalyst was drastically improved, resulting in nearly 100% CO2 conversion 
compared to 12% without boron. The reacted catalysts were investigated 
with synchrotron x-ray adsorption spectroscopy (XAS), transmission 
electron microscopy (TEM), x-ray electron spectroscopy (XPS), and Raman 
spectroscopy to identify the deactivating factor. It was determined that 
neither sintering nor coking was a significant factor in Pt/SiO2 catalyst 
deactivation, instead that platinum and boron interact electronically to 
optimize DRM catalysis, which results in high activity at relatively low DRM 
operating temperatures. 

5:00pm HC+AS+SS-WeA-9 Facet Dependence of RhCu Single-Atom Alloy 
Structure and Reactivity, Yicheng Wang, R. Hannagan, Tufts University; J. 
Schumann, M. Stamatakis, University College London, UK; C. Sykes, Tufts 
University, UK 

Direct propane dehydrogenation is a promising way to address the current 
propene shortage. RhCu single-atom alloys (SAAs), predicted by first-
principal calculations, have recently been demonstrated to be efficient 
propane dehydrogenation catalysts. While RhCu model catalysts have been 
conducted on the (111) facet of Cu to understand the C-H activation 
mechanism, other facets have not been explored which is important 
fundamental information needed to bridge the structure gap between 
model catalyst and nanoparticle studies. In order to better understand the 
effect of the more open (100) facet, we investigated the RhCu(100) SAA 
surface using a combination of scanning tunneling microscopy (STM), 
temperature programmed desorption (TPD), reflection absorption infrared 
spectroscopy (RAIRS) and density functional theory (DFT). Our STM results 
reveal a striking difference between the alloying mechanism of Rh atoms in 
Cu(111) versus Cu(100) surface facets.Unlike RhCu(111) where Rh atoms 
tend to form dense brim in the regions above the step edges, 
homogeneously dispersed Rh atoms can be observed across the whole 
Cu(100) surface. DFT modeling indicates that the starkly different Rh 
distribution can be attributed to the different alloying mechanisms 
between the Cu(111) and Cu(100) where Rh atom place exchange into the 
terraces is facile on Cu(100). CO TPD and RAIRS experiments were 
conducted to study the Rh active sites in the RhCu(100) alloys. CO TPD 
experiments revealed CO desorption at both low and high temperature 
hinting at the existence of dicarbonyls, which had not previously been 
observed on SAAs. RAIRS was used to demonstrate that the low 
temperature peak corresponded to the transition from dicarbonyls to 
monocarbonyls and the high temperature peak involved the desorption of 
the monocarbonyls, which was further confirmed by DFT. Together, these 
results help us to understand the active sites in RhCu(100) SAAs and the 
influence of the coordination environment on the binding to Rh sites. 
These results will further shed light on the structural characterization of 
high surface area SAA catalysts. 

5:20pm HC+AS+SS-WeA-10 Crossing the Great Divide Again: Psuedo-
Molecular Beams at Atmospheric Pressure, E. High, Christian Reece, 
Harvard University 

In order to reliably predict catalytic activity, we require accurate and robust 
kinetic models. Fundamental surface science studies on model catalysts are 
generally considered the “gold standard” for measuring in-depth kinetic 
and mechanistic information. However, there is often a perceived difficulty 
in transferring this knowledge from ultra-high vacuum surface science to 
applied reactor conditions i.e., at elevated temperature and pressure. This 
misunderstanding led to the development of terms such as pressure gap. In 
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reality this so-called pressure gap is in fact a pressure continuum, with the 
caveat that the catalyst state (i.e., the structure and composition) must be 
kept consistent across the pressure regimes [1,2]. Herein we demonstrate a 
high-pressure analogue to classic molecular beam experiments utilising a 
home-built transient flow reactor in order to directly compare results 
measured at UHV and at atmospheric pressure. Using CO oxidation over 
polycrystalline Pd as a test reaction, we find that the transient behaviour 
observed at UHV [3] is recreated in the transient flow reactor. Further, the 
fundamentally derived kinetic model that is used to describe the molecular 
beam experiments also recreates the transient behaviour observed at 
atmospheric pressure when fed into a packed bed reactor simulation. 
 
[1] Reece, C., Redekop, E.A., Karakalos, S., Friend, C.M. and Madix, R., 2018. 
Crossing the great divide between single-crystal reactivity and actual 
catalyst selectivity with pressure transients. Nature Catalysis, 1(11), 
pp.852-859. 
 
[2] Reece, C. and Madix, R.J., 2021. Moving from Fundamental Knowledge 
of Kinetics and Mechanisms on Surfaces to Prediction of Catalyst 
Performance in Reactors. ACS Catalysis, 11(5), pp.3048-3066. 
 
[3] Libuda, J., Meusel, I., Hoffmann, J., Hartmann, J., Piccolo, L., Henry, C.R. 
and Freund, H.J., 2001. The CO oxidation kinetics on supported Pd model 
catalysts: A molecular beam/in situ time-resolved infrared reflection 
absorption spectroscopy study. The Journal of Chemical Physics, 114(10), 
pp.4669-4684. 
 

5:40pm HC+AS+SS-WeA-11 Self-Propagating High Temperature Synthesis 
of Chevrel Phase Sulfides from Elemental Precursors, Tessa Gilmore, M. 
Pawar, P. Gouma, The Ohio State University 

Self-propagating high temperature synthesis (SHS) is a spontaneous, 
irreversible, combustion process that requires close to no energy to 
produce complex materials at high temperature through self-sustained 
reactions. Little is known about the mechanistic nature of this versatile 
process, which limits its controllability and applicability. Chevrel Phase (CP) 
compounds (MxMo6S8-CPs) constitute a class of multifunctional, ceramic, 
designer materials targeted for catalysis, battery electrodes, quantum 
computing, and other applications. In this research, the successful and 
rapid processing of the sulfide Chevrel compound Cu4Mo6S8 via SHS is 
demonstrated, and a mechanism is provided. Thermochemical 
measurements identify an atypical behavior for this SHS process where the 
overall reaction temperature does not surpass that of the materials with 
the lowest melting point. This result is attributed to intercalation assisted 
massive phase transformation facilitated by the use of a MoS2 precursor. 
Further work to synthesize the Chevrel phase using other cations is 
continuing. 

6:00pm HC+AS+SS-WeA-12 Growth and Activity of Ni Catalysts Supported 
over Ti-doped Ceria from Single Crystal Thin Films to Nanocrystals, J. 
Miao, T. Ara, Jing Zhou, University of Wyoming 

Ceria-supported nickel catalysts have been of great interest in many 
important applications such as dry reforming of methane (DRM).[1] They 
can exhibit promising catalytic behavior owing to the unique redox 
properties of ceria as well as strong metal-support interactions. To enhance 
the thermal stability of ceria as well as improve its redox properties as a 
catalytic support for practical applications in catalysis, metal dopants such 
as Ti can be introduced into ceria. Our previous studies have shown that 
well-ordered (111)-oriented Ce1-xTixO2-δ thin films can be prepared by 
simultaneous introduction of Ce and Ti onto Ru(0001) at 700 K in an oxygen 
environment.[2] The incorporation of Ti in ceria causes the partial 
reduction of Ce from +4 to +3 state. The films are of high quality consisting 
of flat terraces with surface features of ceria lattices, oxygen vacancies, Ti 
dopants, as well as domain boundaries. The extent of the Ce reduction and 
the nature of the surface structure correlate with the amount of Ti dopants 
in ceria. Compared to pure CeO2(111), addition of Ti dopant in Ce1-xTixO2-

δ(111) can provide unique anchoring sites and interaction for deposited Ni, 
which can significantly stabilize Ni as smaller particles upon heating.[3] To 
study as practical catalysts, powder materials of 5 wt.% Ni dispersed over a 
series of Ce1-xTixO2-δ (x: 0-0.5) were prepared using sol-gel and 
impregnation methods and investigated for the DRM reaction with a fixed-
bed flow reactor, monitored by on-line mass spectrometer and GC 
instruments. Incorporation of Ti into the ceria lattice forming Ce1-xTixO2-δ 
was observed with Ti/Ce ratios less than 3/7 and NiO is formed over these 
supports. The formation of segregated titania domains was also detected in 
Ce1-xTixO2-δ with higher Ti/Ce ratios (Ce0.6Ti0.4O2-δ and Ce0.5Ti0.5O2-δ). Both NiO 

and NiTiO3 can be formed in these Ti-rich ceria supports. Our results 
demonstrate that doping Ti can enhance the reducibility of ceria and tune 
the Ni-support interaction, which result in an enhanced coke resistance and 
catalytic performance of Ni in DRM. The research is sponsored by the 
Carbon Engineering Initiative from School of Energy Resources at the 
University of Wyoming. 

[1] Z.Y. Liu, D.C. Grinter, P.G. Lustemberg, T.-D. Nguyen-Phan, Y. Zhou, S. 
Luo, I. Waluyo, E.J. Crumlin, D.J. Stacchiola, J. Zhou, J. Carrasco, H.F. 
Busnengo, M.V. Ganduglia-Pirovano, S.D. Senanayake, J.A. Rodriguez, 
Angew. Chem. Int. Ed.55, (26), 7455-7459 (2016). 

[2] Y. Zhou, J. Zhou, J. Phys. Chem. Lett.1, (11), 1714-1720 (2010). 

[3] Y. Zhou, J. M. Perket, A. B. Crooks, J. Zhou, J. Phys. Chem. Lett.1, (9), 
1447-1453 (2010). 
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