
Tuesday Afternoon, November 8, 2022 

Tuesday Afternoon, November 8, 2022 1 2:20 PM 

Surface Science Division 
Room 319 - Session SS+2D+AS-TuA 

Structure, Adsorption and Reaction at 2D Material Surfaces 
Moderators: Florencia C. Calaza, Instituto de Desarrollo Tecnológico para 
la Industria Química, Argentina, Arthur Utz, Tufts University 

2:20pm SS+2D+AS-TuA-1 Chemically Identifying Single Adatoms with 
Single-Bond Sensitivity During Oxidation Reactions of Borophene, L. Li, N. 
Jiang, Sayantan Mahapatra, University of Illinois - Chicago 

The chemical interrogation of individual atomic adsorbates on a surface 
significantly contributes to understanding the atomic-scale processes 
behind on-surface reactions. However, it remains highly challenging for 
current imaging or spectroscopic methods to achieve such a high chemical 
spatial resolution. Here we show that single oxygen adatoms on a boron 
monolayer (i.e., borophene) can be identified and mapped via ultrahigh 
vacuum tip-enhanced Raman spectroscopy (UHV-TERS) with ~4.8 Å spatial 
resolution and single bond (B–O) sensitivity. With this capability, we realize 
the atomically defined, chemically homogeneous, and thermally reversible 
oxidation of borophene via atomic oxygen in UHV. Furthermore, we reveal 
the propensity of borophene towards molecular oxygen activation at room 
temperature and phase-dependent chemical properties. In addition to 
offering atomic-level insights into the oxidation of borophene, this work 
demonstrates UHV-TERS as a powerful tool to probe the local chemistry of 
surface adsorbates in the atomic regime with widespread utilities in 
heterogeneous catalysis, on-surface molecular engineering, and low-
dimensional materials. 

2:40pm SS+2D+AS-TuA-2 Tailoring the Interfacial Properties of 2D 
Transition Metal Silicates on Metal Supports, N. Doudin, K. Saritas, Yale 
University; J. Boscoboinik, G. Li, Brookhaven National Laboratory; S. Ismail-
Beigi, Eric Altman, Yale University 

Two-dimensional (2D) transition metal (TM) silicates have the potential to 
add magnetic, piezoelectric, and multiferroic functionalities to the toolkit 
of 2D layers used to develop new technologies. To date, these 2D TM 
silicates have been chemically bound to the growth substrate through 
oxygen atoms; the ability to weaken the interaction with the substrate to 
isolate the materials as single vdW layers is crucial for realizing their 
potential. Hydration or hydrogenation of the 2D TM silicate presents an 
ideal modification methodology to pacify the bonds to the substrate and 
create tailored interface properties and functionalities. Towards this end, 
here we report the interaction of Au- and Pd-supported 2D TM silicates 
with H2O, H2, and O2. We employed a range of characterization tools to 
assess the materials before and after treatment with the probe molecules. 
Ambient pressure x-ray photoelectron spectroscopy (AP-XPS), ambient 
pressure infrared reflection absorption spectroscopy (AP-IRRAS), low 
energy electron diffraction (LEED), and scanning tunneling microscopy 
(STM) in conjunction with first principles theory were utilized to assess 
surface morphology, interface characteristics, surface chemistry, and 
chemistry in in the confined spaces between the 2D TM silicate and metal 
support. The interaction of probe molecules with TM silicates on Pd(111) 
and Au(111) was studied over wide pressure (10-6–1 mbar) and 
temperature (300–600 K) ranges. The data show that the dissociative 
adsorption of H2 takes place to form OH bonds on the oxide surfaces under 
UHV conditions. When the pressure is increased to several mbar, the metal 
silicate surfaces are saturated with H atoms at 300 K. Exposure to H2 at 
higher surface temperatures (≥ 600 K) reduces the TM silicate. Also, water 
dissociates readily on the metal silicate surfaces at 300 K. With an increase 
in H2O pressure, a greater degree of surface hydroxylation was observed 
for all samples. At 1 mbar H2O, molecular and dissociated water coexist 
(hydrogen bond OH/H2O). In temperature-dependent studies, desorption 
of weakly bound water and surface dehydroxylation were observed with 
increasing temperature. Via AP-XPS combined with IRAS we study in detail 
the interaction of oxygen with the oxide surfaces, which shows that H2-
induced reduction can be reversed and the original structure restored. Our 
studies provide an effective avenue to achieve hydrated metal silicate 
layers and shed light on how to tune the chemical reactions of these 
overlayers by choosing suitable substrates. 

3:00pm SS+2D+AS-TuA-3 Metal Oxide and Metal Dichalcogenide 2D 
Nanocrystals: Structure, Adsorption and Catalytic Properties, Jeppe V. 
Lauritsen, Aarhus University, Denmark INVITED 

Nanocrystals of two-dimensional materials may exhibit fascinating optical, 
electronic or chemical properties. In heterogeneous catalysis, the edge 

sites of some planar metal oxide and metal sulfide nanocrystals have been 
demonstrated be far more active than the majority sites exposed on basal 
planes. These observations have motivated us to obtain a better 
understanding of the edge site structure of 2D nanocrystals and try to 
establish the fundamental connection to their behavior in heterogeneous 
catalysis and electrocatalysis. I will discuss two examples showing how we 
investigated the structure and adsorption properties at the atomic scale by 
using scanning tunneling microscopy (STM) and photoemission 
spectroscopy techniques (XPS) on well-defined planar 2D nanocrystals 
supported on model substrates: 

i. We used to atom-resolved STM images investigate edge reactivity of 
monolayer CoOOHx particles, widely considered as the active phase of 
cobalt-based catalysts in alkaline electrochemical water splitting. Water 
exposure experiments combined with atom-resolved STM imaging directly 
show an increased capacity to dissociate water on the edge sites, which is 
further substantiated by theoretical modelling [1]. Moreover, addition of 
Fe has strong promotional effect on the oxygen evolution. We have 
compared how the CoOOHx nanocrystals and chemical composition 
develops after the sample has been used as the working model electrode 
directly in a homebuilt in situ electrochemical cell attached to the STM 
chamber [2]. Our activity measurements confirm the expected increased 
oxygen evolution (OER) activity for Co-oxides mixed with Fe, which 
however depends in a highly non-linear way on the actual Fe content. 
Based on this information we found a model where the main effect of Fe 
doping in Co oxide is that of a structural edge stabilizer [3]. 

ii. MoS2 nanocrystals are active catalysts in heteroatom extrusion from 
hydrocarbons (O, N, S) in oil and bio-oil processing (hydrotreating). Atom-
resolved STM studies of MoS2 nanocrystals as a supported model catalysts 
was used in combination with DFT analysis of molecule adsorption on MoS2 
edge to evidence an interesting new mechanism where adsorption of 
heteroatom-bearing hydrocarbons on a vacancy pushes neighboring S 
atoms aside. Thereby the adsorption event itself creates better catalytic 
active sites capable of adsorbing large hydrocarbons, explained the 
unusually wide selectivity of MoS2 towards these reactions [4]. 

[1] J. Fester, et al., Nat. Comm 8, 14169 (2017). 

[2] Z. Sun, et al., Rev. Sci. Inst. 92, 094101 (2021). 

[3] Z. Sun, et al., ACS Nano 15, 18226 (2021). 

[4] N. Salazar, et al., Nat. Comm 11, 4369 (2020). 

4:20pm SS+2D+AS-TuA-7 Intercalated Cu2-xO Thin Film Confined 
Underneath Hexagonal Boron Nitride, J. Trey Diulus, Z. Novotny, N. 
Dongfang, N. Comini, J. Beckord, Y. Al-Hamdani, University of Zurich, 
Switzerland; M. Muntwiler, Paul Scherrer Institute, Switzerland; M. 
Hengsberger, M. Iannuzzi, J. Osterwalder, University of Zurich, Switzerland 

Confined catalysis has been achieved in zero and one dimensions using 
zeolites, metal-organic frameworks, and carbon nanotubes for optimized 
catalytic performance. Confinement can also be achieved in two 
dimensions by intercalation of reactants between solid layers. 2D materials 
grown on metal surfaces have become widely used model systems to study 
2D-confined catalysis. Yet, numerous transition metals have been found to 
be more active in their oxidized form. Unfortunately, the growth of h-BN 
via chemical vapor deposition (CVD) has proven to be more difficult on 
metal oxides than on metals. Instead, a metal substrate underneath an h-
BN monolayer can be oxidized via O2 intercalation. Due to weak 
interactions between h-BN and Cu(111), the Cu(111) substrate is a prime 
candidate for intercalated oxidation, forming a thin oxide film (~3 Å) while 
the h-BN remains intact. Growth of h–BN on Cu(111) was achieved through 
CVD by borazine exposure in ultra-high vacuum at the In Situ Spectroscopy 
beamline at the Swiss Light Source (SLS). The surface structure, chemical 
composition, and uniformity of the as-grown h-BN/Cu(111) heterostructure 
were determined with low-energy electron diffraction, Auger electron 
spectroscopy, and X–ray photoelectron spectroscopy (XPS). Oxidation of 
the Cu(111) under h-BN via O2 intercalation was executed by exposure to 
near-ambient partial pressures of O2 (0.001 to 1 mbar) at temperatures 
ranging from 25 to 200 °C. Ambient pressure XPS and X-ray absorption 
spectroscopy were utilized at each temperature and pressure to determine 
the oxidation state of Cu and develop a recipe for preparing an ordered h–
BN/Cu2-xO/Cu(111) heterostructure. Further characterization of an ordered 
h–BN/Cu2–xO/Cu(111) was obtained at the PEARL beamline at the SLS. 
Scanning tunneling microscopy (STM) provided atomic-resolution imaging 
of the sample held at 78 K, displaying a Cu2O-like structure. STM further 
shows the oxidation of the Cu(111) substrate occurs via O intercalation at 
the h-BN grain boundaries. Density functional theory calculations, X-ray 
photoelectron diffraction experiments, and multiple-scattering simulations 
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using the Electron Diffraction in Atomic Clusters code, provided further 
structural information, suggesting O atoms first adsorb to HCP-Cu sites on 
Cu(111), followed by the formation of a Cu2O-like trilayer in between the 
substrate and h–BN. Ultimately, we fully characterize the structure and 
oxidation mechanism of a well-defined nano–reactor system that is ideally 
suited to study reactions in confined space. Furthermore, we propose this 
preparation method can be applied to more systems comprising of a 2D 
monolayer on a metal substrate. 

4:40pm SS+2D+AS-TuA-8 Imaging Surface Defects on MoS2, Blake 
Birmingham, Baylor University 

MoS2 is an exciting hydrogen evolution reaction (HER) catalyst that exhibits 
promising activity in acidic media. However, the role of density and 
reactivity of defect sites to the HER performance of MoS2 is currently 
unclear. Up to now, correlation of localized HER activity to atomic scale 
defects have been inferred via ex-situ measurements, where the 
macroscopic electrode activity is determined via bulk electrochemical 
techniques and correlated with the number of active sites that are 
measured separately via nanoscale surface imaging such as Scanning 
Tunneling Microscopy (STM) or Transmission Electron Microscopy. 

In the presented experiment, the structural and chemical properties of bulk 
mineral MoS2 catalyst during HER were monitored in-situ by 
electrochemical scanning tunneling microscopy (EC-STM). The nanoscale 
structure of the MoS2 is correlated with its electrochemical activity in 0.5 M 
H2SO4(aq) electrolyte. Defects on the MoS2 basal plane were atomically 
resolved before and after several rounds of cyclic voltammetry (CV) 
measuring the HER current vs applied potential against a carbon reference. 
Atomically resolved imaging of the same nanoscale area before and after 
HER does not show an increase in atomic defect site density after 
prolonged HER probed by many rounds of CVs. This indicates that new 
sulfur vacancies are either not produced during HER on MoS2 basal plane or 
are produced and immediately occupied by hydrogen atoms. The surface 
was imaged near the HER onset potential, the evolution reaction was 
directly imaged as strong local tunneling instability. The tunneling 
destabilization effect is strongest near the nanoscale defect sites 
potentially due to local hydrogen gas bubbling. 

5:00pm SS+2D+AS-TuA-9 Modifying 2D Transition Metal Dichalcogenides 
(TMDs) by Incorporating Excess Transition Metals, Matthias Batzill, 
University of South Florida INVITED 

Crystal modifications in 2D materials can introduce new functionalities in 
these materials. Here we discuss compositional and structural crystal 
modifications in some transition metal dichalcogenides (TMDs). 
Specifically, we show that excess metals can be incorporated into the 
crystal structures of Mo-, and W- dichalcogenides and in PtTe2. In the 
former the excess metals result in the formation of metal rich mirror twin 
grain boundary networks, while in the latter a phase transition from PtTe2 
to Pt-monotelluride can be induced. In this presentation we discuss the 
transformation mechanisms and the properties that arise from these 
compositional modifications. 

5:40pm SS+2D+AS-TuA-11 SSD Flash Poster Session: Oral Presentations,  

5:40: SS-TuP-7 - Dr. Pierluigi Bilotto 

5:43: SS-TuP-12 - Dr. Benjamen Reed 

5:46: SS-TuP-13 - Mr. Xiao Zhao 

5:49: SS-TuP-6 - Dr. J. Trey Diulus 

5:52: SS-TuP-9 - Mr. Dustin Johnson 

5:55: SS-TuP-18 - Aman Patel 
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