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8:20am SS1+AS+HC-FrM-1 Operando Photoluminescence Microscopy 
Study of Photoreduction of Resazurin on Tio2 Microcrystals, Hao Zhu, Z. 
Zhang, W. Lu, B. Birmingham, Baylor University 

Titanium dioxide (TiO2) has been extensively studied for its photo-
reactivity-related applications in solar cells, clean hydrogen energy, and 
environmental remediation. It is commonly accepted that the anatase (A) 
phase is more photoreactive than the rutile (R) phase. However, the 
reversed relative photo activities were often reported. In addition, mixed-
phase TiO2 has shown the highest photoactivity but the synergetic effect is 
not clear. Understanding the syngenetic effect at the two-phase interface 
will lead to a new era of catalyst design. 

In this work, operando photoluminescence microscopy was used to 
investigate the photoreduction of resazurin on anatase microcrystals, rutile 
microcrystals, rutile (110) single crystals, and anatase (001) single crystals. 
Our results show that the rate of resazurin photoreduction on the rutile 
(110) surface was higher than that on the anatase (001) surface. The 
reaction rates on anatase microcrystals with a large percentage (001) facet 
are faster than that on anatase (001) single crystals and close to the 
reaction rate on rutile (110) single crystals. The reaction rate of the anatase 
microcrystals depends on the morphology and structure of each individual 
particle. The mechanism of the syngenetic effects at the rutile/anatase 
interface was also studied on the synthesized A-R two-phase microcrystals. 

8:40am SS1+AS+HC-FrM-2 Unraveling Surface Structures of Ga-Promoted 
Transition Metal Catalysts in CO2 Hydrogenation, Si Woo Lee, M. Lopez 
Luna, S. Shaikhutdinov, B. Roldan Cuenya, Fritz Haber Institute of the Max 
Planck Society, Germany 

Gallium-containing intermetallic compounds and alloys with transition 
metals have recently been reported to be active in the hydrogenation of 
CO2 to methanol. However, the promotional role of Ga in these catalysts is 
still poorly understood, in particular due to the lack of information about 
the surface structures of the catalysts, especially under reaction conditions. 
In this respect, studies using surface-sensitive techniques applied to well-
defined model systems can provide key information to elucidate the 
reaction mechanism and provide the basis for the rational design of Ga-
promoted TM catalysts. 

In this work, we employed in situ Near Ambient Pressure Scanning 
Tunneling Microscopy (NAP-STM) and X-ray Photoelectron Spectroscopy 
(NAP-XPS), which make possible the studies of surfaces in the reaction 
atmosphere, to monitor the structural and chemical evolution of the Ga/Cu 
surfaces in the CO2 hydrogenation reaction. NAP-STM images recorded in 
the reaction mixture revealed temperature- and pressure-dependent de-
alloying of the initially formed, well-ordered c(2×2)-Ga/Cu(111) surface 
alloy and the formation of Ga-oxide islands embedded into the Cu(111) 
surface. Thus, NAP-STM studies revealed that the surface undergoes de-
alloying and phase separation into Ga-oxide and (1×1)-Cu exposing Ga-
oxide/Cu(111) interfacial sites. Notably, in our atomically-resolved STM 
image on Ga-oxide/Cu(111), it is clearly observed that Ga-oxide grows into 
an ultrathin oxide layer with (4√3×4√3)R30° superstructure when grown on 
Cu(111). From NAP-XPS studies on Ga/Cu(111) in the presence of CO2 and 
H2, the formation of formate was observed, and this intermediate was 
finally transformed into methoxy at elevated reaction temperatures, the 
final surface-bound intermediate of methanol synthesis. In contrast to Ga-
containing Cu catalyst, on the other hand, there was no reaction 
intermediate at high temperature on the Ga-free Cu(111) surface, 
demonstrating that the further reaction does not occur any more from 
chemisorbed CO2

δ- on Cu alone. Therefore, the GaOx/Cu interface formed 
under reaction conditions may expose catalytically active sites, that should 
be taken into account for elucidating the reaction mechanism on the Ga-
promoted systems. For the first time, our operando surface 
characterizations reveal strong evidence that Cu–Ga catalysts are activated 
in CO2 hydrogenation with the formation of embedded oxide-metal 
interfacial sites by de-alloying transition, which allow us to prove the 
promotional role of Ga in Cu-Ga catalysts. 

9:00am SS1+AS+HC-FrM-3 Stabilization of Active Cu Sites on Oxide 
Surfaces, Dario Stacchiola, Brookhaven National Laboratory INVITED 

Cu-based catalysts are active for partial and full oxidation reactions. Copper 
can be oxidized under moderate oxidant pressures and temperature to 
Cu2O, and further to CuO under typical catalytic reaction conditions. We 
present here model systems using both copper oxide thin films and single 
crystals used to interrogate the effect of alkali, metal, and oxide modifiers 
on the stability of exposed active Cu sites. In situ experiments allow the 
observation of dynamic processes and phases under reaction conditions. 

9:40am SS1+AS+HC-FrM-5 An optimized IRAS Setup to Investigate 
Adsorbates on Metal-Oxide Single Crystals, David Rath, J. Pavelec, U. 
Diebold, M. Schmid, G. Parkinson, TU Wien, Austria 

The IRAS system GRISU (GRazing incident Infrared absorption Spectroscopy 
Unit) was developed to investigate adsorbates on metal oxide single 
crystals with maximum sensitivity. GRISU combines the commercially 
available FTIR spectrometer Bruker Vertex 80v with a UHV chamber [1]. 

The compact design utilizes only one CF150 flange (6″) on the UHV 
chamber, ensuring the precise positioning of all the optical components 
and the high-performance requirements. 

The system features five mirrors for beam guidance placed in HV and UHV 
environments and optimizes the system's performance, flexibility, and 
usability. The result is a small controllable focal-spot diameter (max. 3 mm) 
on the sample, motorized optical components, and apertures that control 
the shape of the illumination area on the sample to reduce the background 
signal. A second aperture limits the incidence angle range of the infrared 
radiation illuminating the sample. Incidence angles between 49° and 85° 
are possible. 

The simulated system (done with a ray-tracing program and a simplified 
spectrometer model) shows an efficiency of 13 %, i.e., 13 % of the radiation 
passing through the first aperture (Ø 6 mm) after the IR source in the FTIR 
spectrometer reaches the detector after being reflected from the 
molecular beam spot (Ø 3.5 mm) on the sample. Compared to a 
commercially available system with two parabolic mirrors with a focal 
length of 250 mm, the efficiency is about 20x higher. 

The performance of the system is demonstrated by first measurements. 

[1] J. Pavelec, et al., J. Chem. Phys. 146, 014701 (2017). 

10:00am SS1+AS+HC-FrM-6 Photochemical Fluorination of TiO2(110), 
Melissa Hines, W. DeBenedetti, Q. Zhu, M. Hasany, D. Somaratne, Cornell 
University 

Fluorine has been widely reported to improve the photoreactivity of TiO2 
nanocrystals, but surface science studies of this enhancement have been 
stymied by the lack of well controlled fluorination chemistries. Fluorine-
terminated rutile (110) surfaces were produced by the photochemical 
degradation of solution-prepared carboxylate monolayers in the presence 
of XeF2 (g) at room temperature. The reaction initially produces a multi-
nanometer-thick surface layer with a nominal composition of TiOF2. The 
TiOF2 layer largely dissolves with immersion in room temperature H2O, 
leaving behind a fluorinated surface terminated by 0.8 monolayers of F 
bound to initially undersaturated Ti atoms. Scanning tunneling microscopy 
images showed that the fluorinated surface was rough on an atomic scale, 
displaying short, atomically straight rows parallel to the [001] direction. 
The fluorinated surface remained notably contamination free, even after 
immersion in solution and exposure to air for tens of minutes. The 
relatively high reactivity of the TiOF2 surface layer towards etching can be 
rationalized in terms of disrupted charge balance in the surface layer. 
Consistent with this, density functional theory simulations showed that the 
removal of bridging O atoms from the fully fluorinated surface to produce 
O2 would be exoergic. 

10:20am SS1+AS+HC-FrM-7 Surface Structures of La0.8Sr0.2MnO3 (001) Thin 
Films, Erik Rheinfrank, M. Brunthaler, G. Franceschi, M. Schmid, U. Diebold, 
M. Riva, Institute of Applied Physics, TU Wien, Austria 

Lanthanum-strontium manganite (La0.8Sr0.2MnO3, LSMO) is a perovskite 
oxide used as a cathode material in solid oxide fuel cells, which convert 
chemical energy to electrical energy. To gain deeper insights into the 
reaction mechanisms, it is important to understand the structure of the 
surface at the atomic scale. To this end, we grow atomically flat single-
crystalline LSMO thin films on Nb-doped SrTiO3 (STO) substrates via pulsed 
laser deposition (PLD). Previously, this has been achieved already for the 
(110) orientation [1,2]. Here, we use a similar approach on the (001) 
surface that is commonly used for oxide-based electronics and spintronics. 
The as-grown films were transferred in UHV from the PLD chamber to a 
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surface science system, and characterized with scanning tunneling 
microscopy, x-ray photoelectron spectroscopy, and low-energy electron 
diffraction. We show how the LSMO surface structures change due to 
variation of the oxygen chemical potential upon annealing. Moreover, Ar+ 
sputtering and subsequent annealing removes preferentially Mn over La. 
This can be exploited to transform a B-site (Mn) terminated surface into an 
A-site (La/Sr) rich surface. The B-site terminated surface is recovered by 
depositing Mn from an MnO target. 

[1] Franceschi et al., J. Mater. Chem. A, 2020, 8, 22947-22961 

[2] Franceschi et al., Phys. Rev. Materials, 2021, 5, L092401 

10:40am SS1+AS+HC-FrM-8 Adsorption of Organophosphate Nerve Agent 
VX on the (101) Surface of Anatase Titanium Dioxide, Gloria Bazargan, 
NRC Research Associate, U.S. Naval Research Laboratory; I. Schweigert, D. 
Gunlycke, Chemistry Division, U.S. Naval Research Laboratory 

We quantify the adsorption of the organophosphate venomous agent X 
(VX) on the clean and hydroxylated (101) surfaces of anatase titanium 
dioxide (TiO2) with density functional theory (DFT) calculations. Our results 
show that adsorption on the clean anatase (101) surface occurs through 
the VX phosphoryl oxygen (O=P) site and involves the formation of a 
Ti⋅⋅⋅O=P dative bond. Steric effects inhibit adsorption through the VX 
nitrogen and sulfur sites by the formation of Ti⋅⋅⋅N and Ti⋅⋅⋅S dative bonds. 
On the hydroxylated (101) surface, adsorption similarly proceeds through 
the VX phosphoryl oxygen site but entails the formation of surface–
adsorbate hydrogen bonds. Additionally, weak non-covalent interactions 
between the surface hydroxyl groups and the adsorbate’s nitrogen and 
sulfur atoms stabilize VX/(101) complexes formed by adsorption through 
these secondary sites. 
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