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9:40am SS2+AS+HC-WeM-6 Understanding the Growth of Sn and Pt-Sn 
Clusters on Titania and Carbon Surfaces, S. Beniwal, University of South 
Carolina; W. Chai, University of Texas at Austin; M. Qiao, P. Kasala, 
University of South Carolina; K. Shin, G. Henkelman, University of Texas at 
Austin; Donna Chen, University of South Carolina 

Supported Pt-Sn bimetallic clusters have applications in number of catalytic 
processes, including dehydrogenation of alkanes and selective 
hydrogenation of unsaturated aldehydes. In these reactions, the presence 
of Sn is known to promote the desired selectivity of the Pt-based catalyst. 
However, the chemical activity the supported Pt-Sn catalysts is dependent 
on the Sn oxidation state and the nature of Sn interaction with the support, 
as well as dispersion. Sn and Pt-Sn clusters have been vapor-deposited on 
TiO2(110) and highly oriented pyrolytic graphite (HOPG) and studied by 
scanning tunneling microscopy, X-ray photoelectron spectroscopy, and low 
energy ion scattering. Deposition of Sn on titania results in the formation of 
small, uniformly sized clusters with SnOx at the cluster-support interface 
and reduction of the titania support. Subsequent deposition of Pt produces 
exclusively bimetallic clusters, and Sn diffuses away from cluster-support, 
resulting in a decrease in SnOx and Sn-rich cluster surfaces. Density 
functional theory (DFT) calculations demonstrate that M-TiO2 bonding is 
favored over M-M bonding for M=Sn, unlike for transition metals such as 
M=Pt, Au, Ni, and Co. Furthermore, the substantial charge transfer from Sn 
to TiO2 leads to dipole-dipole repulsion of Sn atoms that prevents 
agglomeration into the larger clusters that are observed for the mid-late 
transition metals. DFT studies also confirm that addition of Pt to a Sn 
cluster results in strong Pt-Sn bond formation and diminished Sn-O 
interactions. In the case of Sn deposition on HOPG, the clusters are 
surprisingly small given that Sn does not interact strongly with the support, 
whereas other metals such as Pt, Re and Pd readily diffuse to form large 
clusters that aggregate at step edges. DFT investigations show that Sn is 
unique in that the per atom binding energy of Sn in small clusters (<15 
atoms) is as low as 0.14 eV/atom compared to Sn atoms in the bulk; for Pd, 
Pt, and Re, the binding energy is 0.9-1.9 eV/atom. Therefore, it is 
thermodynamically favorable for Sn to form small clusters and for other 
metals to form large clusters. 

11:00am SS2+AS+HC-WeM-10 Single Nanoparticle Surface Chemistry: 
Structure-Reactivity Relationships, Evolution During Reactions, and an 
Approach to Ultra-High Temperature Surface Chemistry, C. Lau, A. Friese, 
D. Rodriguez, Scott Anderson, University of Utah 

Nanoparticles (NPs) are inherently heterogeneous, with variations in size, 
shape, and distributions of reactive sites. This talk will explore the kinetics 
for oxidative etching of individual carbon and silicon NPs, tracking changes 
in reactivity as the NP structure evolves under reaction conditions. 

Examples of O2 oxidation of typical carbon black and graphene oxide NPs is 
shown in the figure, which shows the NP mass vs. time at 1200 K under 
inert (unshaded background) and oxidizing conditions (cyan background). 
The lower frames show how EEO2(the etching efficiency in terms of Da of 
mass lost per O2 collision) varies with the NP mass. Oxidative etching of 
carbon NPs varies significantly between NPs from different feedstocks, but 
there are also variations between NPs from the same feedstock, reflecting 
variations in the distributions of surface sites. Furthermore, the reactivity 
of individual NPs evolves non-monotonically in time as the NPs etch, with 
rate fluctuations of up to 5 orders of magnitude. Eventually, all carbon NPs 
become nearly inert to O2, signaling that the surface layer(s) have 
transformed to multiwall fullerene-like structures. 

For silicon NPs, we are able to study oxidation over a temperature range 
from 1200 to 2500 K, spanning the bulk Tmelt of both silicon and silica. 
Etching involves several interacting processes that depend differently on 
temperature and time, thus etching of silicon-based NPs can have quite 
complex time dependence. For example, at temperatures (e.g. 1200 K) well 
below the silicon melting point (Tmelt = 1683 K), the etching mass loss rate is 
initially low, accelerating as etching progresses, then eventually dropping 
several orders of magnitude to ~zero as the NP surface grows a passivating 
silica layer. At temperatures closer to the melting point (e.g. 1500 K), the 
oxidative mass loss rate starts high and remains high as the NP loses 15 – 
30% of its initial mass, then abruptly drops to near zero as the surface 

passivates. For temperatures above Tmelt, the etch rate begins to decrease 
immediately upon O2 exposure, but it never drops to zero, i.e., the NP 
surface never passivates. 

One of the features of this method is that the upper temperature possible 
is limited only by the sublimation rate of the particle’s material. Thus for Si, 
it is straightforward to examine temperatures well above Tmelt. For ultra-
high temperature ceramic materials, it is possible to study surface 
chemistry at temperatures to well above 3000 K. Oxidation of HfC (Tmelt≈ 
4200 K), will be used to illustrate this capability. 

11:20am SS2+AS+HC-WeM-11 Oxidation of Size-Selected Ag Clusters on 
Graphene: Bulk Motifs and Electronic Anomalies at sub-Nanoscale, F. Loi, 
University of Trieste, Italy; M. Pozzo, University College London, UK; Luca 
Bignardi, L. Sbuelz, University of Trieste, Italy; P. Lacovig, E. Tosi, S. Lizzit, 
Elettra Sincrotrone Trieste, Italy; A. Kartouzian, U. Heiz, Technical 
University Munich, Germany; R. Larciprete, Institute for complex systems - 
CNR, Italy; D. Alfè, University College London, UK; A. Baraldi, University of 
Trieste, Italy 

The evolution of the aggregation of condensed matter from single atoms to 
three-dimensional structures represents an crucial topic in nanoscience 
since it contains essential information to achieve tailor-made growth of 
nanostructured materials. Such issue is particularly important in the case of 
the formation of nano-oxides, which have strong potentialities in 
heterogeneous catalysis reactions. In this respect, we investigated the 
oxidation of an Ag nanocluster composed of 11 atoms supported on 
epitaxial graphene on Ru(0001), combining synchrotron-based core-level 
photoelectron spectroscopy and ab initio DFT calculations. Our analysis 
indicated that a single Ag11 cluster can bond with up to 12 O atoms. 
Moreover, we evidenced that the Ag-O bonds in the nanoclusters include 
contribution from the Ag 4d states, with a remarkable difference with the 
case of Ag single crystal surfaces, for which only Ag 5s states are involved. 
The oxidized Ag11O12 nanocluster is indeed more similar to a bulk oxide 
rather than to an oxidized surface, as it reaches a final hybrid structure 
formed of d10 Ag(I) and d8 Ag(III) ions which strongly resembles that of AgO 
bulk oxide. Furthermore, we found that the Ag 3d core level in the Ag11 

nanoclusters is dominated by initial state effects and has a unique behavior 
when increasing the oxygen density. This anomaly seems to be related to 
the dimensionality of the nanocluster and provides an excellent example of 
the differences that sub-nanometer atomic aggregates of a material show 
with respect to the bulk and surface counterparts. 

11:40am SS2+AS+HC-WeM-12 Precision Engineering of Metal 
Nanoparticle Surfaces for Fundamental Studies of Catalytic Reactivity, 
Michelle Personick, Wesleyan University INVITED 

Understanding fundamental structure-activity relationships in catalysis is 
key to enabling the directed design of improved catalytic materials, but the 
surfaces of working catalysts are complex. The use of precisely defined 
nanomaterials provides a powerful tool for facilitating insights into active 
site structure and reaction mechanisms. Such materials also enable testing 
and validation of insights from fundamental experimental and 
computational surface science under catalytic operating conditions. 
However, synthesizing nanomaterials with the precise surface structures 
and compositions necessary to test specific hypotheses is a significant 
challenge, and creative new approaches to materials synthesis are 
required—particularly for bimetallic materials. This talk will highlight the 
use of large (~75 nm), well-defined metal nanoparticles as model surfaces 
to test predictions from computational surface science. In addition, it will 
describe materials-generalizable synthetic tools developed by our research 
group for controlling metal nanoparticle shape, surface structure, defect 
structure, and composition, with an emphasis on dilute bimetallic 
nanoparticles. Halide-assisted metal ion reduction enables the controlled 
co-reduction of metals with dissimilar reactivity (Au/Pd, Pd/Cu, Au/Ag), 
while differentially tuning the relative rates of reduction for each metal to 
define the shape and surface composition of the material. Plasmon-
assisted metal ion reduction takes advantage of the light-responsive 
properties of materials like Ag to enable (1) the directed deposition of 
catalytically active but poorly plasmonic metals such as Pt, and (2) the 
reconfiguration of monometallic Ag materials to modify defect structure 
while retaining the same surface structure and adsorbates. Together with 
other techniques developed in our research group, these tools provide a 
platform for the precision engineering of catalytic metal nanomaterials. 
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