Monday Afternoon, November 7, 2022

Biomaterial Interfaces Division Room 318 - Session BI+AS+HC+SS-MoA

Bioinspired Materials and Applications

Moderators: Sally M. McArthur, Deakin University, Australia, Tobias Weidner, Aarhus University, Denmark

1:40pm BI+AS+HC+SS-MOA-1 Bioinspired Approaches to Prevent Microbes and Fouling on the Surface of Membranes, R. Shah, T. Goodwin, Jessica Schiffman, University of Massachusetts Amherst INVITED

The reliability and ease of operation of membrane-based water purification systems has led to their increased use in water and wastewater treatment. However, water and energy are mutually dependent critical resources; to produce clean water requires energy and the production of energy requires large volumes of water. Unfortunately, when microorganisms and other foulants accumulate on the surface of membranes and block their pores, more energy is required to operate the separation process even though its productivity is significantly reduced. The overall goal of this talk is to illustrate how bioinspired approaches can be used to enhance the properties of ultrafiltration membranes. Our first approach will demonstrate how we controlled the deposition of the bioinspired "glue" dopamine in order to fabricate ultrafiltration membranes with retained selectivity and pure water flux. Molecules for polymerization were immobilized on the membrane's surface yet prevented from attaching to the membrane's pores due to a backflow of nitrogen gas achieved using simple in-house constructed equipment. If time allows, I will provide an overview of our recent exploration into how pitcher plant inspired immobilized liquids can dramatically increase the fouling resistance of membranes that have consistent flux over at least ten cycles of operation. Biofouling during membrane-based operations is a major challenge and we suggest that there are numerous bioinspired approaches that can address this problem.

2:20pm BI+AS+HC+SS-MoA-3 Antibiotic-Free Liquid Layers Decrease Bacterial Adhesion on Catheters In Vivo, C. Fong, University of Maine; M. Andersen, A. Flores Mireles, Notre Dame; Caitlin Howell, 5737 Jenness Hall The rise of antibiotic resistance is one of the greatest global public health challenges of our time. Although new antibiotics continue to be discovered, the pace is slowing while the rate of discovery of new antibiotic-resistant organisms continue to grow at an alarming rate. New, non-chemical approaches are needed which can reduce bacterial surface attachment and growth without leading to further resistance. Over millions of years, Nature has developed several ways to mechanically direct or stop bacterial growth, leading to materials-based antibacterial mechanisms which are elegant, effective, and difficult for bacteria to overcome. One of these approaches, immobilized liquid layers, functions via the use of a mobile, dynamic, and sacrificial physical barrier between the bacteria and the surface which they may contaminate. In vitro proof-of-concept experiments using urinary catheters- one of the most common and infection-prone medical devices-liquid layers were found to reduce bacterial adhesion by 99% compared to untreated controls. In tests in vivo, the system performed beyond expectations, reducing not only bacterial adhesion but overall surface protein contamination as well. The results provide hope that continuing to engineer materials-based approaches to stop bacterial adhesion and growth can help us to stay ahead of antibiotic resistance.

2:40pm BI+AS+HC+SS-MoA-4 Discovery of Cell Instructive Materials for Next Generation Medical Devices: Exploring Microtopography and 3D Shapes, *Morgan Alexander*, University of Nottingham, UK

The polymer biomaterials found in the clinic today are dominated by materials that have been chosen largely on the basis of their availability and mechanical properties. It would be desirable to design our way forward from this situation to new and better biomaterials chosen for positive interactions with surrounding cells and tissues. Unfortunately, our understanding of the interface between most materials and biology is poor. Only in isolated cases is there a good understanding of cell-material surface interactions and fewer still where material-tissue interactions are well characterised and understood.

This paucity of information on the mechanism of biomaterial interactions within the body acts as a roadblock to rational design. Consequently, we have taken a high throughput screening approach to discover new bio-instructive polymers from large chemical libraries of synthetic monomers presented as micro arrays. [1,2] This approach, akin to engineering *Monday Afternoon, November 7, 2022*

serendipitous discovery, has resulted in novel materials which we have taken all the way from the lab to the clinic.

More recently we have extended our approach to explore the opportunities offered by micro topography and 3D shape manipulation to provide bio-instructive cues topography to immune cells, stromal cells and pathogenic bacterial cells. To do this we have developed and adopted a range of high throughput screening platforms, including theTopoChip[3], ChemoTopoChip [4] and used 3D printing to produce the ArchiChip [5]. The talk will focus on these topographic platforms and our findings, in particular novel topographies that reduce bacterial biofilm formation and provide beneficial host cell responses which has the potential to reduce infection in medical device implantation.[6]

References

[1] Combinatorial discovery of polymers resistant to bacterial attachment Hook et al. **Nature Biotechnology** 30 (9), 868-875 (2012).

[2] Materials fo	or stem cell fa	actories of	the future Celiz	et al. Nature
Materials	13	(6),	570-579	(2014).
[3] Immune modulation by design: using topography to control human monocyte attachment and macrophage differentiation Vassey et al. Advanced Science 7 (11), 1903392 (2020).				

[4] Discovery of synergistic material-topography combinations to achieve immunomodulatory osteoinductive biomaterials using a novel in vitro screening method: The ChemoTopoChip Burroughs et al. **Biomaterials** 271, 120740 (2021).

[5] Innate Immune Cell Instruction Using Micron-scale 3D Objects of Varied Architecture and Polymer Chemistry: The ChemoArchiChip Vassey et al. under review.

[6] Micro topographical instruction of bacterial attachment, biofilm formation and in vivo host response Romero et al. under review.

3:00pm BI+AS+HC+SS-MoA-5 Development of a Method for Visualizing Nanometer-Scale Three-Dimensional Structures of Chromosomes by Three-Dimensional Atomic Force Microscopy, Ryohei Kojima, K. Miyazawa, K. Teramae, Kanazawa University, Japan; T. Sumikama, PRESTO, JST, Japan; M. Meguro, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Japan; K. Imadate, Osaka University, Japan; N. Okano, Kanazawa Unversity, Japan; S. Horike, Research Center for Experimental Modeling of Human Disease, Kanazawa University, Japan; K. Hirahara, Osaka University, Japan; T. Fukuma, Kanazawa University, Japan Three-dimensional atomic force microscopy (3D-AFM) is capable of obtaining 3D force images at solid-fluid interface in sub-nanometer scale. In the previous research, 3D-AFM visualized molecular-scale hydration and flex molecular structures of bio samples such as lipid and DNA. As a next step, it is required to visualize 3D complex structures with high order molecular organizations. In this research, we developed 3D-AFM for visualizing 3D folded structures of human chromosomes. Chromosome (Fig. 1a) is composed of 3D folded structures that has important roles for genetic transfer. However, nanometer-scale 3D folded structures of human chromosomes have not been well understood yet. It is expected that 3D-AFM contributes to chromosome study, but it is difficult to measure inside of 3D folded structures of chromosomes by conventional conical tip without damage of samples by tip scanning. To visualize 3D folded structures of chromosome by 3D-AFM, we fabricated a carbon nanotube (CNT) tip (length > 500 nm, diameter < 20 nm) to penetrate chromosomes by 3D-AFM. By using the conventional tip and home-made CNT tip (Fig. 1c(i)-d(i)), we performed 3D-AFM of human chromosomes, and obtained 3D frequency shift (Δf) image (Fig. 1b). We extracted single Δf curves from the 3D Δf images obtained with Si tip and CNT tip, respectively (Fig. 1c(ii)-d(ii)). ∆f curve using CNT tip shows oscillatory profile until 500 nm in depth from the surface of the chromosome in contrast to the Δf curve using Si tip. This result suggests that the obtained 3D Δf image using CNT tip reflects structures inside chromosome. Based on this research, applications of 3D-AFM will be

expanded for visualizing 3D structures of biological samples in various research fields.

Monday Afternoon, November 7, 2022

3:20pm BI+AS+HC+SS-MoA-6 Mass-Manufactured Surface Textures Kill Bacteria as Part of Low-Cost Water Purification Devices, *Liza White, C. Howell,* University of Maine

Water purification and disinfection, particularly of turbid water, is a significant and growing need worldwide. Pulsed electric field (PEF) devices can be used to inactivate pathogens in water; however, manufacturability, power consumption, cost, and portability remain significant hurdles. Through leveraging paper industry technology in Maine, we have optimized electric field generation using custom textured film in a roll-to-roll manufacturing process to act as the functional part of portable PEF water purification devices. Specifically, we used commercially produced textured release paper as a substrate for the film electrodes and explored different types of metal coating to reduce the overall power consumption, cost, and manufacturability. CAD and modeling software was then used to simulate various textures to determine the optimal texture to focus the electric field while keeping a low total current density, and a custom texture was designed. The mass-manufactured textured materials were cut into singular flow cells and were sputter-coated with various metals and assembled. The flow cells were connected to a pulsed generator that pulsed a square wave at 15 μs at a frequency of 100 Hz with a voltage of 100 V. Water with a known concentration of bacteria was pushed through the flow cells at a rate of 200 μ L/minute. The outlet sample was collected, and bacterial reduction was calculated. These tests demonstrated that mass-manufactured surface textures could function as part of a low-cost PEF water purification device. The development of low-cost PEF water purification devices based on surface texture will help provide more accessible clean water in the face of growing water shortages.

4:00pm BI+AS+HC+SS-MoA-8 Nature-inspired Materials for Energy and Environmental Sustainability, *Tak Sing Wong*, The Pennsylvania State University INVITED

With an evolutionary history of 3.95 billion years and over 8 million species on earth, natural organisms have often served as blueprints for the design of highly functional engineered materials. In particular, natural species have demonstrated how different micro/nanoscale surface architectures can yield an array of distinct interfacial functions. Understanding the fundamental principles behind these natural surfaces will aid the design of multifunctional materials for a range of energy and sustainability applications. In this talk, I will discuss a number of specific examples showcasing our recent biologically inspired technologies which take inspirations from insects to plants. These examples include the development of anti-fouling and self-cleaning surfaces inspired by the slippery rims of the *Nepenthes* pitcher plants, as well as the fabrication of ultra-antireflective coatings inspired by the leafhopper-produced brochosomes. Perspectives on how nature-inspired materials may impact future applications in energy and sustainability will be discussed.

4:40pm BI+AS+HC+SS-MoA-10 Programmable Biomimetic Light-Harvesting Systems: Quantum-Optical Control of Light-Matter Interactions, A. Lishchuk, E. Csanyi, Graham Leggett, University of Sheffield, UK

The absorption of light by molecules leads to the formation of excitons (electron-hole pairs). Control of excitons is essential for many new and emerging technologies, but the inefficient dynamics and short diffusion lengths (~ 10 nm) of excitons in molecular systems limit their utilisation. Theory suggests that exciton diffusion lengths could be enhanced by several orders of magnitude in the strong light-matter coupling regime. However, design principles for the production of photonic materials that exploit strong coupling are lacking. We have found that photosynthetic light-harvesting complexes (LHCs) from plants and bacteria are strongly coupled to localised surface plasmon resonances (LSPRs) in arrays of metal nanostructures, yielding macroscopically extended excited states that enable coherent, non-local excitation transfer and the creation of bespoke optical states not found under weak coupling. However, proteins are not suitable for putative applications of molecular photonic materials. Inspired by photosynthetic LHCs, we demonstrate the fabrication of programmable plexcitonic antenna complexes, in which polymer scaffolds organise excitons within localised surface plasmon resonances to achieve strong light-matter coupling, yielding delocalised excited states (plexcitons) that extend across at least 1000s of pigments. In our plexcitonic antenna complexes, poly(amino acid methacrylate) scaffolds grown from gold nanostructures by atom-transfer radical polymerisation (ATRP) organise excitons (transitions in chlorophylls) within LSPRs to achieve strong light-matter coupling, yielding Rabi energies up to twice as large as those achieved with biological LHCs. The energies of the resulting delocalised excited states (plexcitons) are programmed by varying the

degree of polymerisation, scaffold packing density and chlorophyll loading. Steric hinderance in fully-dense PCysMA brushes limits binding of bulky chlorophylls, but the chlorophyll concentration can be increased to ~2M, exceeding that in biological light-harvesting complexes, by controlling the grafting density and polymerisation time. Moreover, synthetic plexcitonic antenna complexes display pH and temperature responsiveness, facilitating active control of strong plasmon-exciton coupling. These biologicallyinspired metamaterials offer great promise for the design of new types of molecular photonic device.

5:00pm BI+AS+HC+SS-MoA-11 Microfluidic QCM with Ultrahigh Q-Factor: A New Paradigm for Acoustic Biosensing?, Y. Zhao, Duke University; Z. Parlak, Qatch LLC.; M. Yu, Duke University; D. French, Qatch LLC.; W. Aquino, Stefan Zauscher, Duke University

Acoustic thickness shear mode transducers, such as the quartz crystal microbalance (QCM), can provide high throughput biomolecular detection for diagnostics with minimal sample preparation. A QCM's resonance frequency change (Δ f) is generally related to the mass change (Δ m) due to analyte binding on the sensor surface. If equipped with dissipation monitoring, a QCM's dissipation (D or Δ D) is related to the viscoelastic properties of the surface-bound analyte. Although current QCM sensors are simple and robust devices, they generally require high sample volumes and suffer from low sensitivity/resolution due to fluid damping.

We show that by adding microfluidic channels onto QCM sensors, we can strongly couple small amounts of liquid within the channels to the sensor, thereby largely eliminating fluid damping. This coupling eliminates dissipation effects during shear excitation and thus dramatically increases the quality factor (Q-factor) of the sensor and allows for accurate measurement of changes in fluid density, and therefore also for biomolecular mass measurements in liquid environments.

The abrogation of damping effects arises from the almost lossless coupling of the liquid to the side walls of the channels, which results in an in-plane pressure wave. We found that if the wavelength of the pressure wave is considerably longer than the channel width, the liquid inside the channels is strongly coupled to the channel walls and thus damping is suppressed. Since viscous effects are largely eliminated, the microfluidic QCM (μ -QCM) is also insensitive to temperature-induced viscosity changes. With a high Q-factor, direct data interpretation, pure mass sensitivity and temperature insensitivity, and small device size, the μ -QCM provides a new paradigm for acoustic biosensing.

We used Finite Element Analysis (FEA) to test our hypothesis that the inplane pressure wave generated by the channel side walls is responsible for the enhanced performance of the μ -QCM. Furthermore, we conducted a nondimensional analysis to reveal the most important parameters, including channel dimensions, crystal thickness, and fluid viscosity/density, and how they affect the dissipation. This knowledge can be easily extended to other acoustic bio-transducers to improve their sensitivity/resolution.

Finally, we show the design and microfabrication of μ -QCM devices, and their testing with a range of liquids with known viscosity and density, to demonstrate the high Q-factor of μ -QCMs and to demonstrate the latter's ability to sense density changes (unencumbered by viscosity) in small (~nL) sample volumes.

Author Index

-A-

- Alexander, M.: BI+AS+HC+SS-MoA-4, **1** Andersen, M.: BI+AS+HC+SS-MoA-3, 1 Aquino, W.: BI+AS+HC+SS-MoA-11, 2 — C — Csanyi, E.: BI+AS+HC+SS-MoA-10, 2 — F — Flores Mireles, A.: BI+AS+HC+SS-MoA-3, 1 Fong, C.: BI+AS+HC+SS-MoA-3, 1 French, D.: BI+AS+HC+SS-MoA-11, 2 Fukuma, T.: BI+AS+HC+SS-MoA-5, 1
- G -Goodwin, T.: BI+AS+HC+SS-MoA-1, 1 - H -
- Hirahara, K.: BI+AS+HC+SS-MoA-5, 1 Horike, S.: BI+AS+HC+SS-MoA-5, 1

Bold page numbers indicate presenter Howell, C.: BI+AS+HC+SS-MoA-3, 1; BI+AS+HC+SS-MoA-6, 2 -1 - 1Imadate, K.: BI+AS+HC+SS-MoA-5, 1 — K — Kojima, R.: BI+AS+HC+SS-MoA-5, 1 — L — Leggett, G.: BI+AS+HC+SS-MoA-10, 2 Lishchuk, A.: BI+AS+HC+SS-MoA-10, 2 - M -Meguro, M.: BI+AS+HC+SS-MoA-5, 1 Miyazawa, K.: BI+AS+HC+SS-MoA-5, 1 -0-Okano, N.: BI+AS+HC+SS-MoA-5, 1 — P — Parlak, Z.: BI+AS+HC+SS-MoA-11, 2

— S —

Schiffman, J.: BI+AS+HC+SS-MoA-1, Shah, R.: BI+AS+HC+SS-MoA-1, Sumikama, T.: BI+AS+HC+SS-MoA-5, — T — Teramae, K.: BI+AS+HC+SS-MoA-5, — W — White, L.: BI+AS+HC+SS-MoA-6,

Wong, T.: BI+AS+HC+SS-MoA-8, **2** — Y —

Yu, M.: BI+AS+HC+SS-MoA-11, 2 — Z —

Zauscher, S.: BI+AS+HC+SS-MoA-11, **2** Zhao, Y.: BI+AS+HC+SS-MoA-11, 2