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8:00am CA+HC+LS+VT-WeM-1 Probing the Impact of Nanoscale Defect 
Sites in Perovskite Photovoltaic Films with Time-Resolved Photoemission 
Electron Microscopy, Keshav Dani, 1919-1 Tancha, Kunigami-kun, Japan
 INVITED 

Hybrid perovskite photovoltaic devices have rapidly emerged as promising 
contenders for next generation, low-cost solar cell technology. Yet, the 
presence of defect states critically impacts device operation, including 
device efficiency and potentially long-term stability. Understanding the 
nature of these defects, and their role in photocarrier trapping, requires 
techniques that are capable of probing ultrafast photocarrier dynamics at 
the nanoscale. 

In this talk, I will discuss the development of time-resolved photoemission 
electron microscopy (TR PEEM) techniques in my lab [1, 2], applied to 
hybrid perovskite solar materials. Thereby, we directly visualize the 
presence of the performance limiting nanoscale defect clusters and 
elucidate the role of diffusion in the charge carrier trapping process [3]. By 
correlating PEEM measurements with other spatially resolved 
microscopies, we identify different types of defects that form, and study 
how passivation strategies may have a varied impact on them [4]. Finally, 
we show that these defect can act as seeds for degradation [5]. 

[1] M. K. L. Man, et al. Imaging the motion of electrons across 
semiconductor heterojunctions. Nature Nanotech.12, 36 (2017). 

[2] E. L. Wong, et al. Pulling apart photoexcited electrons by photoinducing 
an in-place surface electric field. Science Advances4, eaat9722 (2018). 

[3] T. A. S. Doherty*, A. J. Winchester*, et al.Performance-limiting trap 
clusters at grin junction in halide perovskites. Nature580, 360 (2020). 
*equal authors 

[4] S. Kosar, et al. Unraveling the varied nature and roles of defects in 
hybrid halide perovskites with time-resolved photoemission electron 
microscopy. Energy Environ Sci. 14, 6320 (2021) 

[5] S. Macpherson, et al. Local Nanoscale Phase Impurities are Degradation 
Sites in Halide Perovskites. Nature DOI: 10.1038/s41586-022-04872-1 
(2022) 

8:40am CA+HC+LS+VT-WeM-3 Correlating Structure and Chemistry Using 
Ambient Pressure Photoemission and X-Ray Scattering, Slavomir Nemsak, 
Lawrence Berkeley Laboratory Advanced Light Source INVITED 

In the last two decades, Ambient Pressure X-ray Photoelectron 
Spectroscopy (APXPS) has established itself as a go-to technique to study 
heterogeneous and complex materials under reaction environments. 
Multimodal approaches, which correlate information from two or more 
complementary techniques, are currently one of the forefronts of the 
APXPS development [1]. In the past three years, the ALS contributed one 
such setup: a combined Ambient Pressure PhotoEmission and X-ray 
Scattering (APPEXS) instrument commissioned and operated at beamline 
11.0.2 [2]. The combination of the two in-situ techniques allows correlating 
structural and chemical information. By using APPEXS, we observed 
dynamics of the exsolution process of catalyst metallic nanoparticles [3]. To 
expand the capabilities of APPEXS further, we introduced a new platform 
using arrays of patterned nanoparticles to study the evolution of catalytic 
systems under reaction conditions [4]. Future developments of the 
technique(s) will be also discussed. 

References 

[1] H. Kersell et al., Ambient Pressure Spectroscopy in Complex Chemical 
Environments, 333-358 (2021). 

[2] H. Kersell et al., Rev. Sci. Instr. 92, 044102 (2021). 

[3] H. Kersell et al., Faraday Discussions, accepted (2022). 

[4] H. Kersell et al., Synchr. Rad. News, accepted (2022). 

9:20am CA+HC+LS+VT-WeM-5 Gating of the 2D Hole Transport in 
Diamond by Subsurface Charges, E. Strelcov, Andrei Kolmakov, NIST 

The unique electronic, physical, and thermal properties of diamond make 
diamond-based FETs one of the most prospective devices for high-

frequency power electronics. Transfer doping of hydrogenated diamond is 
a common process to form 2D conducting channels in diamond FET. The 
electron /hole transport of such a device is sensitively dependent on near-
surface scatters including charged traps. 

Here, using SEM (EBIC) and AFM Kelvin probe force (KPFM) microscopies 
we report on imaging of the hole transport in narrow conducting channels 
as a function of the density and depth of near-surface charges. We 
demonstrate the gating effect induced by trapped charges and discuss the 
methods to minimize these effects. 

9:40am CA+HC+LS+VT-WeM-6 Development of 0–D Argon Collisional 
Radiative Model conjoined with Optical Emission Spectroscopy between 1 
mTorr to 760 Torr, Tag Choi, N. Abuyazid, D. Patel, University of Illinois at 
Urbana-Champaign; D. Jacobson, LytEn. Inc; S. Keniley, S. Dubowsky, D. 
Barlaz, D. Curreli, D. Ruzic, University of Illinois at Urbana-Champaign 

Optical emission spectroscopy (OES) is a non-invasive plasma diagnostic, 
which can be utilized with 0-dimensional argon collisional radiative model 
(Ar CRM) to understand dynamics of excited and charged argon species and 
determine plasma parameters in the system. This work aims to study rate 
coefficients of excited and charged argon species, calculate their densities 
over time and verify the theoretical results with experimental optical 
spectra in a wide range of pressure regimes. The model considers various 
types of collisions such as electron and atom excitation/ionization, photon 
emission, diffusion, penning ionization, and excimer formation. A merit 
function is used to obtain a better correlation between the theoretical and 
experimental densities of the various argon species. This allows the model 
to get a more accurate estimate of the electron temperature and the 
densities. Various plasma sources are used such as a low pressure 
inductively coupled plasma (ICP) source, dielectric barrier discharge (DBD), 
and microwave discharges, to produce different types of plasmas at 
pressure ranges of 10 – 50 mTorr and 1 – 760 Torr. The optical emission 
spectra and Langmuir probe measurements are collected for verifications 
on a low pressure ICP source and DBD discharge. For the verification of 
atmospheric microwave discharge, OES data is collected for temperature 
calculations from Specair and the model. Different plasma sources produce 
different electron temperatures and densities. The ICP source, DBD and 
microwave discharge have electron temperatures (Te) of 2 – 5 eV, 1 – 3 eV, 
and 0.4 – 0.6 eV and electron density (ne) of 1E16 to 1E18 m3, 1E18 to 1E21 
m3, and 1E19 to 1E22 m3 respectively. A methane and argon gas mixture 
are introduced to the microwave discharge to understand how plasma 
parameters differ from a pure argon environment. 

11:00am CA+HC+LS+VT-WeM-10 Atomic-Scale Modeling of Bismuth and 
Argon Clusters Sputtering of Water/Vacuum Interfaces, Zbigniew  
Postawa, M. Kański, C. Chang, S. Hrabar, Jagiellonian University, Poland
 INVITED 

Modeling of water/vacuum interfaces should consider the high vacuum 
pressure of water. First, there is continuous evaporation of the liquid into 
the vacuum chamber, which must be considered. This phenomenon poses 
a significant challenge for conventional experimental techniques. Yang et 
al. presented a way to reduce the impact of this phenomenon by using a 
microfluidic channel [1]. This approach uses an ion beam to drill a 2-3 μm 
window in the channel wall, exposing the liquid flowing below. Such an 
arrangement allows for maintaining a low base pressure (~10-7 mbar) in the 
measuring chamber. This technique has already been used to study 
photochemical reactions, biofilms, and liquid-liquid interfaces by secondary 
ion mass spectrometry or secondary electron microscopy [2]. Recently, 
another approach minimizing the effect of high vacuum pressure of water 
that uses a graphene cell encapsulating a liquid was proposed in studies 
with transmission electron microscopy [3]. 

Recently, we have developed a new ReaxFF potential parameterization for 
modeling C/H/O systems designed directly for sputtering simulations [4]. 
This parametrization is up to 3 times faster than standard ReaxFF. New 
force-field allowed us to perform molecular dynamics computer 
simulations of water and graphene-covered water systems sputtered by 
bismuth and argon clusters. The mechanism of molecular emission from 
these two systems is investigated. The effect of the projectile size and the 
influence of the protecting graphene sheet on the emission process is 
discussed. 

References 

[1]L. Yang, X.-Y.et al., Lab on a Chip, 11, 15, 2481, 2011, doi: 
10.1039/c0lc00676a. 

[2] X.-Y. Yu,, J. Vac. Sci.Technol. A, 38, 040804, 2020, doi: 
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[3] S. M. Ghodsi at al., Small Methods, 3, 5, 1900026, 2019, doi: 
10.1002/smtd.201900026 and references therein. 

[4] M. Kański at al., J. Phys. Chem. Lett. 13, 2, 628, 2022, doi: 
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11:40am CA+HC+LS+VT-WeM-12 Finite-Elements Modeling of Solid-
Electrolyte Interfaces in Through-Membranes Imaging and in-Liquid 
Scanning Probe Experiments, Alexander Tselev, Department of Physics & 
CICECO-Aveiro Institute of Materials, University of Aveiro, Portugal INVITED 

Studies of the physicochemical processes at the interfaces between solids 
and electrolytes interfaces require operando multi-parametric 
measurements with chemical and electric potential sensitivity, in-depth 
selectivity, as well as with a high lateral resolution. A number of 
experimental techniques were implemented for this purpose. In this talk, 
we will describe applications of finite-elements (FE) modeling to elucidate 
and interpret microscopic imaging and measurements with liquids ranging 
from non-polar ones to decimole electrolyte solutions. This includes 
probing through graphene membranes with the use of microscopy and 
spectroscopy tools based on high-energy beams—X-rays and electron 
beams, as well as low-energy probing with the use of scanning probe 
techniques. Scanning probe techniques can be implemented both with 
probes in liquids and with probes separated from the electrolytes by 
membranes. We will discuss liquid-solid interface probing by the Kelvin 
probe force microscopy (KPFM) through graphene membranes as well as 
by near-field microwave microscopy through dielectric membranes. 
Furthermore, models for piezoresponse force microscopy and KPFM with 
probes immersed in electrolytes will be presented. Support of this work by 
the project CICECO-Aveiro Institute of Materials, financed by national funds 
through the FCT/MEC (Portugal) and when appropriate co-financed by 
FEDER under the PT2020 Partnership Agreement is acknowledged. 
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