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8:00am AP1+EM+PS+TF-WeM-1 Low-Temperature Synthesis of Crystalline 
InxGa1-xN Films via Plasma-Assisted Atomic Layer Alloying, S. Allaby, F. 
Bayansal, H. Silva, B. Willis, Necmi Biyikli, University of Connecticut 

Based on our first demonstration of crystalline III-nitride film growth via 
hollow-cathode plasma-assisted atomic layer deposition (HCP-ALD) at 
substrate temperatures as low as 200 ℃, this technique is attracting 
increasing interest for the low-temperature deposition of various 
semiconductor layers. Despite its success for binary III-nitride films, ternary 
III-nitrides pose additional challenges including limitation on fine 
stoichiometry control, potential incompatibility of plasma gas mixtures, and 
complexity of in-situ ellipsometry analysis of the growing film. In this work, 
we share our experimental findings on the self-limiting growth of InxGa1-xN 
films on SiO2/Si, quartz, and sapphire substrates using digital alloying 
technique in an HCP-ALD reactor at 200 ℃. 

The InxGa1-xN alloy films were deposited using conventional metal-alkyl 
precursors (triethylgallium, trimethylindium) and two different nitrogen 
plasmas (N2/H2, N2/Ar) as metal precursor and nitrogen co-reactant, 
respectively. GaN and InN unit ALD cycle parameters have been determined 
using the saturation curves for each binary compound. Digital alloying 
technique was used by forming ALD supercycles with the following GaN:InN 
cycle ratios: (9:1), (6:1), (3:1). The targeted indium concentrations ranged 
within (10% – 50%) range. InxGa1-xN alloy films with different 
stoichiometries and thickness values around 50 nm were synthesized to 
further characterize the structural, chemical, optical, and electrical film 
properties. 

In-situ ellipsometry was employed to monitor the surface ligand-exchange 
reactions and plasma surface interactions. XRD, XRR, XPS, spectroscopic 
ellipsometer, UV/Vis spectroscopy, and Hall-effect measurements are 
carried out to characterize the crystal structure, average crystal grain size, 
film density, stoichiometry (Ga:In ratio), impurity content, complex 
refractive index, optical bandgap, film resistivity, carrier concentration and 
electron mobility, respectively. The experimental results will be discussed 
along with faced challenges, potential solutions and follow-up studies. 

8:15am AP1+EM+PS+TF-WeM-2 Comparison of Low Temperature 
Methods for Crystallization of Vanadium Oxide Produced by Atomic Layer 
Deposition, Peter Litwin, Naval Research Laboratory, USA; M. Currie, N. 
Nepal, M. Sales, D. Boris, S. Walton, V. Wheeler, US Naval Research 
Laboratory 

Crystalline VO2 (c-VO2) undergoes a phase transformation between two 
crystalline states near room temperature (≈ 68 °C), which is accompanied 
by a metal-to-insulator transition (MIT). This favorable MIT in 
stoichiometric c-VO2 is of interest for numerous applications such as passive 
thermal regulation (e.g. energy efficient windows), thermal sensors, and 
passive radio frequency components. Current VO2 films deposited by 
thermal atomic layer deposition (ALD) processes are amorphous and 
require a high temperature post-deposition annealing step (≥ 400 °C) to 
crystallize, which often limits the application space of ALD VO2 due to 
thermal budget constraints. Thus, the development of processes to 
produce ALD c-VO2 without the need of a high-temperature annealing step 
are desired. 

Two possible routes to c-VO2 are plasma-enhanced ALD (PEALD) and 
femtosecond laser processing (fsLP). PEALD offers increased kinetics 
through the simultaneous delivery of a flux of both energetic and reactive 
plasma species to the growth surface, allowing for deposition and 
crystallization at lower processing temperatures. However, the enhanced 
reactivity of oxidizing-plasma sources poses challenges not present in 
thermal ALD processes of VO2. For example, the oxidation state of the V in 
the metal-organic precursor is less of a driver for stoichiometric control 
often resulting in the more stable V2O5 with plasma processes. In fsLP, 
crystallization is initiated as a result of non-equilibrium excited-state 
dynamics in the film occurring on sub-ps timescales. This produces a 
combination of athermal and thermal annealing expected to promote the 
formation of c-VO2, even under ambient conditions. Both methodologies 
maintain sub-200 °C temperature windows which facilitate the use of c-VO2 
in a wider range of applications. For example, high-temperature annealing 

of VO2 on metal substrates often results in the dewetting of VO2 films; both 
PEALD and fsLP are potential solutions. 

Here we report on investigations into the efficacy of PEALD and fsLP to 
produce c-VO2. A focal point of the PEALD studies is correlating plasma 
properties, including plasma power, Ar/O2 ratio, system pressure, and total 
gas flow during the plasma step, with the control of the VOx stoichiometry 
and crystallinity. We demonstrate control of the amorphous to crystalline 
transition as a function of PEALD parameters and comment on control of 
the V4+/V5+ ratio. fsLP is shown effective at producing c-VO2 from 
amorphous ALD films under ambient conditions. We also discuss the ability 
of the technique to produce c-VO2 on polymer and metal substrates, an 
application space often incompatible with high-temperature annealing. 

8:30am AP1+EM+PS+TF-WeM-3 Temperature-Dependent Dielectric 
Function of Plasma-Enhanced ZnO Atomic Layer Deposition using in-Situ 
Spectroscopic Ellipsometry, Yousra Traouli, U. Kilic, University of Nebraska-
Lincoln, USA; M. Schubert, University of Nebraska - Lincoln; E. Schubert, 
University of Nebraska-Lincoln, USA 

In this study, in-situ spectroscopic is employed to real-time monitor the 
growth of ZnO thin films fabricated by plasma-enhanced atomic layer 
deposition for different temperatures. The process involves dimethylzinc, 
Zn(CH3)2, organometallic precursor and oxygen plasma as the primary 
reactant and co-reactant, respectively. We investigate the cyclic surface 
modifications and growth mechanisms of ZnO for different substrate 
temperatures. Subsequently, the deposition chamber is then used as an 
thermal annealing chamber to investigate the evolution of dielectric 
function of ZnO ultra-thin films for different temperature values (22°C ≤ T ≤ 
300°C). 

Hence, the temperature-dependent complex dielectric function spectra of 
ZnO ultra-thin film is obtained. Complementary x-ray photoelectron 
spectroscopy, x-ray diffraction, and atomic force microscopy are also used 
to provide the compositional, structural, and morphological characteristics 
of the ZnO films, respectively. These findings highlight the critical role of 
precise thermal management in ALD processes for tailoring the dielectric 
properties of ZnO thin films. The insights gained from this study are crucial 
for the development and optimization of ZnO PE-ALD recipe but also for 
optoelectronic devices, ensuring enhanced performance and reliability. 

8:45am AP1+EM+PS+TF-WeM-4 Optical Properties and Carrier Transport 
Characteristics of NiO Films Grown via Low-Temperature Hollow-cathode 
Plasma-assisted Atomic Layer Deposition, Fatih Bayansal, S. Allaby, H. 
Mousa, H. Silva, B. Willis, N. Biyikli, University of Connecticut 

While there is an abundance of as-grown unintentionally doped n-type 
semiconductor materials, only a few alternative materials exhibit p-type 
conduction without requiring additional high-temperature doping 
processes. NiO is of particular interest mainly due to its relative stability 
and promising performance as hole-transport layers in emerging solar cell 
device structures. However, the stability of film properties including carrier 
concentration and mobility of NiO needs to be substantially improved for its 
use as reliable transistor channel layers. While low-temperature thermal, 
plasma, and ozone-assisted ALD efforts have resulted in NiO films with p-
type behavior, degrading film properties over time and at higher 
temperatures, and low hole mobility values prevent the usage of these 
layers for devices. 

To enhance film properties in low-temperature as-grown NiO layers, our 
study conducts a comprehensive investigation on plasma-enhanced ALD 
(PEALD) of NiO films on Si, SiO2/Si, glass, sapphire, and quartz substrates. 
This process utilizes nickelocene (NiCp2) and O2 plasmas within a plasma-
ALD reactor featuring a stainless steel-based hollow-cathode plasma (HCP) 
source, equipped with an in-situ ellipsometer. 800-cycle deposition runs at 
100 – 250 °C substrate temperatures were carried out to achieve at least 30 
nm thick films for further characterization. 

The resulting as-grown crystalline (c-NiO) films are characterized for their 
optical and electrical properties. Films grown at 200 °C exhibited higher 
refractive index values reaching 2.3, which is in good agreement with 
reported values for the best polycrystalline NiO films in the literature. NiO 
films deposited on sapphire and quartz substrates showed strong 
absorption in the UV region (l=190-380 nm) yet demonstrated minimal 
absorption in the visible and near-IR regions. As a result of the analysis 
using the Tauc relation, it was found that the band gaps of all films were 
close to the bulk value of 3.6 eV. Furthermore, we will also present the 
results of Hall-effect measurements conducted at room temperature to 
determine the film resistivity, type of conduction mechanism, Hall mobility, 
and carrier concentration. The long-term stability of the NiO films will be 
investigated at ambient and higher temperature annealing conditions. 
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9:00am AP1+EM+PS+TF-WeM-5 Characterizing Inductively Coupled 
Plasmas in Ar/SF6 Mixtures for Atomic Layer Deposition, David Boris, V. 
Wheeler, U.S. Naval Research Laboratory; M. Sales, NRC Research 
Associateship Program; L. Rodriguez de Marcos, J. Del Hoyo, NASA Goddard 
Space Flight Center; A. Lang, U.S. Naval Research Laboratory; E. Wollack, M. 
Quijada, NASA Goddard Space Flight Center; M. Meyer, NRC Research 
Associateship Program; S. Walton, U.S. Naval Research Laboratory 

Low temperature plasmas containing sulphur hexafluoride (SF6) are 
particularly rich plasmas from the perspective of gas phase chemistry and 
plasma physics.They possess a wide range of positive and negative ion (SFx

+, 
SFy

-, F-, F2
+, etc.) and reactive neutral species (SFx, F, F2, etc.) that play 

important roles in materials processing applications ranging from 
semiconductor etching [1] to the formation of fluoride based optical thin 
films[2]. Understanding the physical mechanisms at play in these plasmas is 
often challenging and requires a comprehensive approach employing 
multiple diagnostic tools. 

In this work, we use a combination of Langmuir probes and optical emission 
spectroscopy to examine the effects of varying process parameters on the 
physical characteristics of Ar/SF6 plasmas generated in a remote, inductively 
coupled plasma (ICP) geometry.In particular, a range of applied RF 
powers,gas flows, and pressures are explored with a focus on the resulting 
changes in atomic F density, plasma density, plasma potential, and the ratio 
of positive to negative ions in the plasma.These changes in plasma 
properties are then tied to changes in the material characteristics of 
aluminum tri-fluoride (AlF3) thin films grown via plasma-enhanced ALD 
using a remote ICP employing Ar/SF6 gas mixtures. This work is supported 
by NASA Astrophysical Research and Analysis (APRA) grant 20-APRA20-
0093/ N0017322GTC0044. This work was also partially supported by the 
NRL Base program through the Office of Naval Research. 

[1] D.C. Messina et al, J. Vac. Sci. Technol. A 41, 022603 (2023) 

[2] L. V. Rodgriguez de Marcos et al, Optical Materials Express 13 (11), 3121-
3136 (2023) 

9:15am AP1+EM+PS+TF-WeM-6 Dynamic Global Model of Cl2/Ar Plasmas: 
In-Depth Investigations on Plasma Kinetics, Tojo Rasoanarivo, C. 
Mannequin, Institut des Matériaux de Nantes Jean ROUXEL - Nantes 
Université, France; F. Roqueta, M. Boufnichel, ST Microelectronics, France; 
A. Rhallabi, Institut des Matériaux de Nantes Jean ROUXEL - Nantes 
Université, France 

Plasma processes such as Atomic Layer Etching (ALE) using Cl2/Ar gas 
mixture are often reported in the literature as chlorine chemistry is suitable 
for a wide variety of materials [1]. ALE is a cyclic process and Cl2 and Ar 
plasmas are implemented for the adsorption and activation steps, 
respectively, through alternating feedgas overtime or overspace. However, 
these studies mostly focus on experimental approaches and modeling 
investigations are scarce. Some others ALE recipes rely on plasma kinetics 
through specific recipes [2] and to better understand plasma/surface 
interactions at atomic scale, we must first precisely investigate plasma 
behavior especially during the switching durations. 

In most cases, global models have been well implemented to determine the 
plasma composition at specific plasma reactor parameters, with good 
computational time effectiveness [3] in steady-states conditions [4]. We 
have implemented the dynamic mode to investigate the plasma kinetics 
during the transitions between the modifying Cl2 plasma and the Ar 
activation plasma. 

We closely investigate the influence of the switch duration between the Cl2 
to/from Ar feedgas, for different RF powers. We found that under a critical 
switch duration there is a competition between the plasmas kinetics mainly 
governed by electrons collisions with the neutrals and the physical 
residence time depending of the working pressure. For short switch 
duration from Cl2 rich plasma toward Ar plasma, we observed discrepancies 
compared to equivalent steady-state composition on chlorine species. 
These differences are associated with longer characteristics time reactions 
than the switch duration. In the case of RF power source switch, we 
observed for switch duration lower than 100 ms, overshoots of the electron 
temperature (Te). These stiff Te variations observed are assumed to 
originate from quasi-instantaneous electrons acceleration before first 
collisions with neutrals. 

These results may be used to predict plasma behavior during ALE 
transitions steps or for fast-paced plasma etching processes. 

References 

[1] K. J. Kanarik, T. Lill, E. A. Hudson et al., J. Vac. Sci. Technol A: 33, 020 802 
(2015). 

[2] A. Fathzadeh,P. Bezard, M. Darnon, I. Manders, T. Conard, I. Hoflijk, F. 
Lazzarino, S. de Gendt, J. Vac. Sci. Technol. A 42, 033006 (2024). 
[3] A. Hurlbatt, A. R. Gibson, S. Schröter, J. Bredin, A. P. S. Foote, P. 
Grondein, D. O’Connell, T. Gans, Plasma Process Polym, 14: 1600138 
(2017). 
[4] R. Chanson, A. Rhallabi, M. C. Fernandez, C. Cardinaud, J. P. Landesman, 
J. Vac. Sci. Technol A, A 31, 011301 (2013). 

9:30am AP1+EM+PS+TF-WeM-7 Precise Growth and Removal of Carbon 
Films by Electron-Enhanced Chemical Vapor Deposition (EE-CVD) and 
Chemical Vapor Etching (EE-CVE), Z. Sobell, Steven George, University of 
Colorado at Boulder 

Electron-enhanced chemical vapor deposition (EE-CVD) was used to grow 
carbon films at T < 70 °C. EE-CVD employs a continuous flux of low energy 
(~100 eV) electrons that are incident on the sample through a methane 
(CH4) reactive background gas (RBG). Electron-enhanced chemical vapor 
etching (EE-CVE) was also used to etch carbon films at < 70 °C. EE-CVE 
employs a continuous flux of low energy electrons that are incident on the 
sample through an oxygen (O2), ammonia (NH3), or hydrogen (H2) RBG. 
Both EE-CVD and EE-CVE were accomplished with precise rate control. 

The EE-CVD and EE-CVE used an electron beam from a hollow cathode 
plasma electron source with currents on the sample of ~30 mA over ~10 
cm2. The electron beam can desorb surface species by electron stimulated 
desorption. The electron beam also travels through the RBG in the reactor 
at pressures of ~1-3 mTorr. Electron induced dissociation can form radicals 
and ions that facilitate the growth or removal of the carbon film. In 
addition, a negative voltage (-30 V) on the substrate (sample bias) was 
observed to greatly enhance both the deposition and etching of carbon 
films. The negative voltage is believed to pull positive ions to the substrate 
to enhance the growth or removal. 

With no applied sample bias, carbon deposition proceeded at ~22 Å/min 
for a CH4 flowrate of 10 SCCM (Fig. 1). The introduction of a sample bias of -
30 V increased the deposition rate by >20 times to ~480 Å/min. In contrast, 
carbon deposition with a +30 V sample bias proceeded at a similar rate to 
carbon deposition with no sample bias. For etching of carbon films with a -
30 V sample bias and RBG flow rates of 4 SCCM, O2 produced the highest 
carbon etch rate at ~225 Å/min (Fig. 2). In contrast, NH3 displayed a slower 
carbon etch rate of ~48 Å/min and H2 had an even slower carbon etch rate 
of ~18 Å/min. 

Raman spectroscopy was used to characterize the carbon films grown at 
different sample biases. At negative substrate voltage, the carbon films 
displayed faster growth, were more disordered (D:G peak ratio=2.29), and 
exhibited faster etching. At zero substrate voltage, the carbon films 
displayed slower growth, were more ordered (D:G peak ratio=1.18), and 
exhibited slower etching. 

Many applications are possible for the EE-CVD and EE-CVE of carbon films. 
More ordered carbon films may find use as hard masks or diffusion barriers. 
Amorphous carbon films may be employed as channel materials. Carbon 
hard masks are currently removed with an O2 plasma which also oxidizes 
the surrounding and underlying material. Using H2 and electrons may allow 
for a single-step oxygen-less hard mask removal. 

9:45am AP1+EM+PS+TF-WeM-8 Microwave Enhanced ALD of Al2O3, 
Benjamin Kupp, J. Haglund, S. Witsell, J. Conley, Oregon State University 

The low deposition temperatures typical of ALD are advantageous for many 
applications. However, low deposition temperatures can allow 
incorporation of -OH groups or residual impurities from unreacted ligands 
which can lead to non-ideal stoichiometry and sub-optimal physical, optical, 
and electrical properties. Although increasing the deposition temperature 
and post deposition annealing can both help drive off impurities and 
improve film properties, the temperatures required may (i) move a process 
out of the ALD regime or (ii) exceed the thermal budget, respectively. To 
maintain a low ALD temperature while maximizing film properties, adding 
energy in-situ during each ALD cycle or supercycle can help drive/speed 
reactions and reduce impurity incorporation. For example, including rapid 
thermal annealing as part of the ALD cycle have been shown to improve 
density, stoichiometry, electrical, and optical properties that cannot be 
achieved by post deposition annealing alone [1-4]. Other reported in-situ 
energy enhanced EE-ALD methods include flash lamp annealing, plasma, 
UV, and laser exposure, electric fields, and electron-beams [5-15]. Here, we 
introduce microwave enhanced MWE-ALD. 

Al2O3 films were deposited at 300 °C using TMA and H2O in a Picosun R200 
PE-ALD chamber integrated with a custom microwave antenna and an MKS 
SG 1024 solid state microwave (MW) generator. Film thickness and 
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refractive index, n, were modeled using a Film Sense FS-1 mapping 
ellipsometer. A 30 s in-situ 400 W MW exposure (without plasma 
generation) during either the TMA or H2O purge part of each ALD cycle 
reduced film thickness by ~7% and ~ 25%, and increased n by ~2% and ~6%, 
respectively, across a 150 mm Si wafer as compared to a control without 
MWs (Fig. 1). Preliminary electrical measurements on MOS devices indicate 
an associated reduction in low field leakage. Additional electrical and 
analytical data will be presented, including MWE-ALD deposition 
temperatures. 

1. Conley, Jr. et al., Appl. Phys. Lett. 84, 1913 (2004). 
2. Conley, Jr. et al., MRS Proc. Vol. 811, 5 (2004). 
3. Conley, Jr., et al., in Physics and Technology of High-k Gate 

Dielectrics II, ECS Proc. vol. 2003-22. 
4. Clark et al., ECS Trans. 41(2), 79 (2011). 
5. Henke et al., ECS J. Sol. Sta. Sci. Tech. 4(7), 277 (2015) 
6. Miikkulainen et al., ECS Trans. 80(3), 49 (2017). 
7. Chalker et al., ECS Trans. 69, 139 (2015). 
8. Holden et al. J. Vac. Sci. Technol. A. 40, 040401 (2022).  
9. No et al., J. ECS 153, F87 (2006). 
10. Österlund et al. J. Vac. Sci. Tech. A 39, 032403 (2021). 
11. Ueda et al., Appl. Surf. Sci. 554, 149656 (2021). 
12. Liu and Chang. J. Chem. Phys. 116, (2002). 
13. Becher et al., Adv. Eng. Mater. 2300677 (2023). 
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