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2:15pm AP+PS+TF-TuA-1 Atomic Layer Etching with Plasma Processing for 
Semiconductor Device Fabrication, Heeyeop Chae, Sungkyunkwan 
University (SKKU), Republic of Korea INVITED 

The critical dimensions of semiconductor devices are continuously shrinking 
in nanometer and atomic scale with 3D device structure. The demand for 
dimension control in angstrom level is drastically increasing also in etching 
processes. Atomic layer etching (ALE) processes are being actively studied 
and developed for various metals, semiconductor, and dielectric materials. 
In this talk, plasma processes for atomic layer etching will be discussed for 
both isotropic and anisotropic patterning of metals and dielectric materials 
including molybdenum, ruthenium, cobalt, titanium nitride, tantalum 
nitride, hafnium oxide, zirconium oxides. [1-9] Typical ALE processes consist 
of surface a modification step and a removal step. For the surface 
modification, various fluorination, chlorination and oxidation schemes were 
applied including fluorocarbon deposition, halogenation, oxidation with 
radicals generated plasmas. For the removal or etching step, various 
schemes were applied including ion-bombardment, heating, ligand 
volatilization, ligand exchange, and halogenation. The surface 
characteristics such as surface roughness and surface residue after plasma-
enhanced ALE processes will be also discussed. 
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2:45pm AP+PS+TF-TuA-3 Atomic Layer Etching in HBr/He/Ar/O2 Plasmas, 
Qinzhen Hao, M. Elgarhy, University of Houston; P. Kim, S. Nam, S. Kang, 
Samsung Electronics Co., Republic of Korea; V. Donnelly, University of 
Houston 

Atomic layer etching (ALE) of Si is reported in a radio frequency (RF) pulsed-
power inductively-coupled plasma (ICP), with periodic injections of HBr into 
a continuous He/Ar carrier gas flow, sometimes with trace added O2. 
Several pulsing schemes were investigated, with HBr injection simultaneous 
with or alternating with ICP power. The product removal step was induced 
by applying RF power to the substrate, in sync with ICP power. Etching and 
dosing were monitored with optical emission spectroscopy. Little or no 
chemically-enhanced ion-assisted etching was observed unless there was 
some overlap between HBr in the chamber and ICP power. This indicates 
that HBr dissociative chemisorption deposits much less Br on Si, compared 
with that from Br created by dissociation of HBr in the ICP. Chemically-
assisted etching rates nearly saturate at 2.0 nm/cycle as a function of 
increasing HBr-containing ICP dose at -75 VDC substrate self-bias. The 
coupled effects of O2 addition and substrate self-bias DC voltage on etching 
rate were also explored. Etching slowed or stopped with increasing O2 
addition. As bias power was increased, more O2 could be added before 
etching stopped. 

3:00pm AP+PS+TF-TuA-4 Comparisons of Atomic Layer Etching of Silicon in 
Cl2 and HBr-Containing Plasmas, Mahmoud Elgarhy, Q. Hao, University of 
Houston; P. Kim, S. Nam, S. Kang, Samsung Electronics Co.; V. Donnelly, 
University of Houston 

This talk will report an experimental investigation of Cl2 vs. HBr for plasma 
atomic layer etching (ALE) of silicon. An inductively coupled plasma (ICP) 
source with a constant flow of Ar (and sometimes He) carrier gases, and 

HBr or Cl2 as a dosing gas was used for etching Si (100) samples. Optical 
emission spectroscopy was used to follow relative yields of SiCl, SiCl2, SiBr 
and SiBr2, and scanning electron microscopy and profilometry were used to 
measure etching rates. HBr and Cl2 residence times in the chamber were 
determined by measuring time-resolved pressure during gas dosing. It was 
found that the pressure rise and fall times were much longer for HBr 
compared to Cl2, suggesting that HBr hangs up on the chamber wall after 
gas dosing. The effect of the delay time between gas dosing and the start of 
ICP power on the etching rate was also investigated. When HBr or Cl2 were 
injected into the reactor with the plasma on, etching occurs for both 
sources, with Cl2 having a higher etching rate. When HBr or Cl2 were fed to 
the reactor with the plasma off, only Cl2 etches. This indicates that the HBr 
does not chemisorb on Si, and bromination of the surface requires the 
plasma to form Br atoms, which do adsorb. 

3:15pm AP+PS+TF-TuA-5 Atomic Layer Etching of Crystalline MoS2 by 
Plasma Fluorination and Oxygenation, Sanne Deijkers1, C. Palmer, N. 
Chittock, E. Kessels, A. Mackus, Eindhoven University of Technology, The 
Netherlands 

Molybdenum disulfide (MoS2) is a two-dimensional (2D) transition metal 
dichalcogenide (TMD) with applications in catalysis and nanoelectronics.1–3 
To enable integration of 2D materials in nanoelectronics, highly controlled 
and low-damage etching processes are required. One example of such a 
process is the atomic layer etching (ALE) of WSe­­2.4 In this work, we 
present a plasma ALE process to etch crystalline MoS2. The process involves 
plasma fluorination and oxygenation, targeting Mo-O-F as a volatile species. 
Previous work using the approach of fluorination and oxygenation involved 
thermal chemistries with an etch-per-cycle (EPC) of 0.5 Å for amorphous 
films and 0.2 Å for crystalline films.5 As plasmas are more reactive than 
their gaseous counterparts, they are expected to allow for etching 
crystalline materials. 

Fluorination was performed by a SF6-based plasma, and as removal step 
various oxygen sources were tested. To avoid continuous etching of the 
MoS2, the plasma composition of the fluorination step had to be 
optimized.6 Addition of H2 to the plasma mixture reduces F radical 
concentration by creating HF species in situ.7 With an adequate H2 content 
using a ratio of SF­6:(SF6+H2) < 0.3, continuous etching is suppressed, and 
only modification of the top surface takes place. As second half-cycle, H2O, 
O2 gas and O2 plasma exposures were tested. Of these only an O2 plasma 
resulted in etching, while dosing H2O or O2 gas resulted in no measurable 
thickness change. Raman measurements showed a strong decrease in the 
characteristic E1

2g and A1g peaks, indicating etching of crystalline MoS­2. The 
complete ALE recipe with saturated SF­6-based plasma and O2 plasma 
exposures had an EPC of 1.1 ± 0.2 Å at 300 °C table temperature. 
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4:00pm AP+PS+TF-TuA-8 A Reduced Order Model of Plasma-Surface 
Interactions in Atomic Layer Etching, David Graves, Princeton University; J. 
Vella, TEL Technology Center, America, LLC 

Any future physics-based, rather than purely data-driven, digital twin of a 
plasma tool and process will need a reduced order model (ROM) of the 
effects of the plasma on the surface being processed. In this talk, I present 
one possible version of a ROM for simulating a plasma atomic layer etching 
(ALE) process. The ROM is based on a transient version of a surface site 
balance model that was first applied in the 1980s for plasma etching. 
Classical molecular dynamics (MD) simulations of ALE of Si using Cl2/Ar+ 
cycles are first validated with experimental measurements and then used to 
provide values for parameters (e.g., ion energy dependent etch yields) for a 
transient site balance model of the process. The ROM is computationally 
much faster than the MD simulations and is shown to reproduce additional, 
and previously unexplained, experimental results. Future applications of 
MD to plasma-surface interactions in semiconductor device fabrication will 
likely use another type of ROM. MD methods require interatomic potentials 
or force fields for all simulated atomic interactions. The force field 
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parameters can be inferred from higher level methods such as density 
functional theory (DFT), coupled with neural net data-driven algorithms. I 
will conclude with preliminary results using one such approach, namely 
Deep Potential MD (DeePMD), to develop illustrative force fields. 

4:15pm AP+PS+TF-TuA-9 Atomic Layer Etching of SiO2 using Sequential 
Exposures of Al(CH3)3 and H2/SF6 Plasma, David Catherall, A. Hossain, A. 
Minnich, California Institute of Technology 

On-chip photonic devices based on SiO2 are of interest for applications such 
as microresonator gyroscopes and microwave sources. Although SiO2 
microdisk resonators have achieved quality factors exceeding one billion, 
this value remains an order of magnitude less than the intrinsic limit due to 
surface roughness scattering. Atomic layer etching (ALE) has potential to 
mitigate this scattering because of its ability to smooth surfaces to sub-
nanometer length scales. While isotropic ALE processes for SiO2 have been 
reported, they are not generally compatible with commercial reactors, and 
the effect on surface roughness has not been studied. Here, we report an 
ALE process for SiO2 using sequential exposures of Al(CH3)3 
(trimethylaluminum, TMA) and Ar/H2/SF6 plasma. We find that each 
process step is self-limiting, and that the overall process exhibits a synergy 
of 100%. We observe etch rates up to 0.58 Å per cycle for thermally-grown 
SiO2 and higher rates for ALD, PECVD, and sputtered SiO2 up to 2.38 Å per 
cycle. Furthermore, we observe a decrease in surface roughness by 62% on 
a roughened film. The residual concentration of Al and F is around 1-2%, 
which can be further decreased by O2 plasma treatment. This process could 
find applications in smoothing of SiO2 optical devices and thereby enabling 
device quality factors to approach limits set by intrinsic dissipation. 

4:30pm AP+PS+TF-TuA-10 Atomic Layer Etching of Cu Using Alternating 
Cycles of Hexafluoroacetylacetone and O2 Plasma, Yusuke Nakatani, 
Hitachi High-Tech, Japan; A. Kaye, Colorado School of Mines, USA; Y. 
Sonoda, M. Tanaka, K. Maeda, Hitachi High-Tech, Japan; S. Agarwal, 
Colorado School of Mines, USA 

Atomic layer etching (ALE) is a critical technology in semiconductor device 
fabrication, including for interconnect metals such as Cu and Co. Previously, 
thermal ALE of Cu has been reported using alternating half-cycles of 
hexafluoroacetylacetone (hfacH) and O2 or O3 at ~275 °C. It has also been 
shown that hfacH cannot spontaneously etch Cu, and peroxidation of the 
Cu surface is required. In this presentation, we will report on ALE of Cu at a 
much lower temperature of 150 °C using hfacH and O2/Ar plasma half-
cycles. 

The ALE process was monitored using in situ reflection-absorption infrared 
spectroscopy (RAIRS). Prior to ALE, the Cu wafers were cleaned using a H2 
plasma at a temperature of 300 °C to reduce the native oxide, and to 
remove the surface carbonates and adsorbed hydrocarbons. Initially, we 
tested the reactivity of hfacH at 150 °C with a reduced Cu surface, and after 
re-oxidation with an O2 plasma. In both cases, in the infrared spectra, we 
observed absorption bands related to CF3 (1240 cm-1), C=C, and C=O (1645 
cm-1) vibrations. On a reduced Cu surface, the C=C and C=O bands were 
much weaker indicating decomposition of hfacH. Since hfacH does not 
spontaneously etch Cu, this indicates that an oxidized Cu surface is required 
for the adsorption of hfacH. Our infrared data also show that the ALE 
window is very narrow, and the etch rate could only be measured at 125 
and 150 °C. At temperatures lower than 125 °C, our infrared data shows 
that hfacH does adsorb onto the CuOx surface, but the temperature is likely 
too low for the formation of the etch products— Cu(hfac)2 and H2O. The 
subsequent O2 plasma half-cycle simply removes the hfac ligand and 
oxidizes the surface further. At 150 °C, a balance is established between 
surface oxidation and removal of CuOx from the surface as Cu(hfac)2 and 
H2O. The etch per cycle at 125 and 150 °C were 0.1 and 0.7 Å, respectively. 
At temperatures higher than 150 °C, atomic force microscopy shows that 
the Cu surface roughens due to severe oxidation, and the Cu film thickness 
cannot be measured with ellipsometry. 

4:45pm AP+PS+TF-TuA-11 Enabling Anisotropic and Selective Etch 
Through Surface Modification of Ru, Owen Watkins, UCLA; H. Simka, 
Samsung Electronics; J. Chang, UCLA 

Ruthenium is a potential replacement for copper in metal interconnects 
below 10 nm, where the grain boundary scattering and the need for a 
barrier layer increases the effective resistivity of Cu. Unlike Cu, Ru can be 
directly etched using O2-plasma-based processes, allowing a subtractive 
metal patterning to be used. Current Ru etching processes largely rely on 
O2/Cl2-based RIE. While this process is able to anisotropically etch Ru, it 
requires Cl2 and damages the hard mask, resulting in ballooning and low 
selectivity. A cyclic process that is halogen-free, anisotropic, and selective 
has been proposed. The process consists of a nitrogen plasma passivation 

step, hydrogen plasma reduction step, and oxygen plasma etching step. The 
passivating layer of RuN formed by N2 plasma exposure can be reduced in 
H2 plasma. Bias applied to the substrate during the H2 step results in the 
selective reduction of RuN on the vertically-exposed surface, leaving a layer 
of RuN on the sidewalls. During the O2 plasma step, RuN passivates the 
sidewall from O radicals that would otherwise etch the sidewall. The two 
surface modification steps cause the normally isotropic O2 plasma etch to 
become anisotropic, while maintaining a high selectivity vs. SiO2 and SiN 
used as the hard mask. The sequential process has been experimentally 
shown to be anisotropic and selective, and results in lower resistivity and 
surface roughness vs. O2 plasma alone. To understand the effects of the 
surface modification steps on the overall process, each step of the 
sequential process has been examined, including the surface composition 
and structure of the Ru film after each plasma exposure. RuO2 and RuN thin 
films were deposited as references, allowing the presence of RuN after 
nitridation to be confirmed using XPS and XRD. The etch rate of nitridated 
Ru films was found to be 0.4 nm per minute in O2 plasma, more than 15 
times less than the etch rate of Ru in O2 plasma at the same conditions. 
Removal of the N2 plasma step from the process resulted in isotropic 
etching, confirming that nitridation is responsible for sidewall passivation. 
XPS was used to confirm that most, but not all of the RuN surface layer is 
reduced after exposure to H2 plasma. H2 plasma was also found to 
significantly affect the etching of hard mask SiO2. Reduction of the plasma 
density by lowering the power and increasing the pressure was necessary 
to reduce SiO2 etching and corner faceting during the H2 step. The 
combination of surface modification techniques results in a process that 
has been demonstrated for features down to 32 nm pitch. 

5:00pm AP+PS+TF-TuA-12 Enhanced Control of Plasma Surface Interaction 
to Etch Alloys Using Transient Assisted Plasma Etching (Tape), Atefeh 
Fathzadeh, KU Leuven/ IMEC, Belgium; P. Bezard, IMEC Belgium; T. Conard, 
F. Holsteyns, IMEC, Belgium; S. De Gendt, KU Leuven/Imec, Belgium 

A novel plasma process design called transient-assisted plasma process 
(TAPP) has been recently introduced to tackle multiple patterning 
challenges brought by the introduction of 3D devices, new ultra-thin films, 
and compound materials without suffering from the poor throughput of 
Atomic layer etching. In the realm of dry-etching, it has exhibited promising 
patterning capabilities at etch rates compatible with high-volume 
manufacturing. In deposition applications, It also has demonstrated 
superior control over precursor dosage and fragmentation for in-situ hard-
mask deposition compared to conventional methods. Moreover, from a 
sustainability perspective, Transient-assisted processing (TAP) presents 
considerable advantages by notably reducing the consumption of 
problematic gases. TAPE operates in cycles, involving at least two phases: 
Time-limited injection of the reactant (with or without plasma), and when 
the injection is stopped, a gas transient happens in the plasma, where the 
reactant concentration diminishes over time, as shown in Figure 1. The 
fluence of reactive species is regulated by the gas pulse characteristics 
(partial pressure, etc.) and its associated plasma transient, while ion fluence 
is governed by the duration of the plasma phase. This segregation yields 
significantly enhanced control over plasma-surface interactions compared 
to conventional plasma etching techniques. This design is compatible with 
any gas mixture, and energy sources (ions, photons, electrons, fast neutral 
species/clusters, etc.). 

Enhancing control over plasma-surface interactions holds promise in 
rectifying the uneven etching observed in multicomponent materials like 
alloys. This imbalance in etching induces a compositional drift, thereby 
impeding the process and deteriorating material characteristics as shown in 
Figure 2a. Typically, one component undergoes predominantly chemical 
etching, while the other experiences primarily physical etching. In TAPE, 
most chemically-driven etching occurs early during the plasma step when a 
substantial amount of etchant is present. The modified surface/profile will 
then be exposed to a reduced etchant quantity and a continued ion 
bombardment. Each cycle is thus capable of providing the necessary 
species for a balanced etching of the compound’s elements. Figure 2b 
compares the chemical composition of InGaZnO after conventional etching 
and TAPE, while Figure 2c compares the etch rate, and profile relative to a 
previously published ALE process. Meanwhile, TAPE consumes 25 times less 
CH4 than the ALE process. 

5:15pm AP+PS+TF-TuA-13 Leveraging Plasma Nitridation for Atomic Layer 
Etching of Ni3Al, Taylor G. Smith, University of California, Los Angeles; J. de 
Marneffe, imec, Belgium; J. Chang, University of California, Los Angeles 

Extreme ultraviolet (EUV) lithography is entering a new era with high 
numerical aperture (NA) EUV, increasing the importance of integrating new 
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absorber layer materials like Ni3Al to mitigate mask 3D effects. However, 
Ni3Al adoption has been limited by difficulties in anisotropically etching 
Ni3Al with high selectivity to the underlying Ru capping layer. A previously 
reported ALE based on plasma oxidation was shown effective at etching 
Ni3Al but had poor selectivity to Ru, which etches spontaneously in oxygen 
plasma. An atomic layer etch (ALE) based on plasma nitridation and formic 
acid (FA) vapor exposure was previously demonstrated to etch Ni1, and in 
this work the nitridation-based ALE process is extended to the more 
complex and industrially relevant Ni3Al. 
X-ray photoelectron spectroscopy (XPS) is used to analyze the surface 
composition of blanket Ni3Al films after plasma nitridation, showing the 
nitrided films have a stoichiometry of Ni2.4AlN. The effects of plasma power, 
from 200 to 700 W, and pressure, from 8 to 50 mTorr, on plasma nitridation 
are examined, with current results indicating that high power and low 
pressure lead to the greatest amount of surface nitridation. Langmuir probe 
measurements are used to correlate these effects with changes in plasma 
density and electron temperature. For the removal half-cycle, FA vapor was 
shown to remove the nitride layer as indicated by the disappearance of the 
characteristic metal nitride peak in the N 1s spectrum at 397.2 eV. XPS also 
shows depletion of Ni as successive ALE cycles are applied, an effect that 
can be mitigated using basic etchants due to their selective removal of Al 
over Ni. Selectivity to Ru is measured by etching blanket Ru films and 
measuring the thickness with SEM, with a current selectivity of 2.4. To 
assess anisotropy, Ni3Al is first conformally deposited over a patterned Si 
substrate by physical vapor deposition (PVD), and the samples are 
subsequently processed by ALE. The ion energy of the nitrogen plasma is 
varied by changing the voltage applied to an ion extraction grid from -100 
to +100 V, with the sidewall Ni3Al etch compared to the vertical Ni3Al etch 
using scanning electron microscopy (SEM). 

1 T.G. Smith, A.M. Ali, J.F. de Marneffe, J.P. Chang, J. Vac. Sci. Technol. A 42, 
022602 (2024). 
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