
Wednesday Afternoon, September 24, 2025 

Wednesday Afternoon, September 24, 2025 1 2:15 PM 

Atomic Scale Processing Mini-Symposium 
Room 206 A W - Session AP+PS+TF-WeA 

Thermal and Plasma enhanced Atomic Layer Etching 
Moderators: Eric Joseph, IBM T.J. Watson Research Center, Greg Parsons, 
North Carolina State University 

2:15pm AP+PS+TF-WeA-1 Selectivity During Spontaneous Dry Thermal 
Etching of Si-Based Materials by Hydrogen Fluoride, Marcel Junige, Micah 
Duffield, Steven George, University of Colorado at Boulder 

Spontaneous dry thermal etching involves reaction of a thin film surface 
with a gaseous etchant leading to material removal with a constant etch 
rate. Spontaneous dry thermal etching can often be involved as a 
competitive process during thermal atomic layer etching (ALE). Selectivity 
can occur during spontaneous dry thermal etching with hydrogen fluoride 
(HF) because HF can form different etch species, F- or HF2

-, that etch with 
material specificity. For example, F- can etch SiNx and HF2

- can etch SiO2. The 
nature of the active HF etch species can be controlled by the HF 
environment. HF alone yields F- etch species. HF together with a polar co-
adsorbate can yield HF2

- etch species. 

The talk will discuss four examples of HF selectivity: SiNx etch vs SiO2 non-
etch; Si etch vs Si3N4, SiCOH and SiO2 non-etch; Si etch vs Si non-etch with 
co-adsorbed H2O; and SiO2 non-etch vs SiO2 etch with co-adsorbed NH3 or 
(CH3)2NH (dimethylamine). The experiments were conducted using in situ 
spectroscopic ellipsometry to monitor the film thicknesses during time to 
obtain etch rates. Additional quadrupole mass spectrometry (QMS) analysis 
was able to monitor the presence or absence of etch products during the 
experiments for Si etch vs Si non-etch with co-adsorbed H2O. 

Selective SiNx etch vs SiO2 non-etch was observed for HF etching at 275°C. 
Etch selectivity was measured for HF pressures from 0.5 to 9.0 Torr. SiNx : 
SiO2 etch selectivity approached a maximum of 150 : 1 at 9.0 Torr. These 
results are consistent with F- as the active etch species that yields SiNx 
etching. Si etch vs Si3N4, SiCOH and SiO2 non-etch was also demonstrated 
for HF etching at 275°C and an HF pressure of 3 Torr. Crystalline Si etched at 
23 Å/min. In comparison, Si3N4, SiCOH and SiO2 etched at much smaller 
rates of 0.03, 0.11 and 0.01 Å/min, respectively. Much higher Si etch rates 
were observed at higher HF pressures at 275 °C. The Si etch rate increased 
to 240 Å/min at an HF pressure of 9 Torr. 

Si etch vs Si non-etch with co-adsorbed H2O illustrated the influence of 
polar co-adsorbed species on the etching. QMS experiments revealed that 
Si was etched by HF at a pressure of 1 Torr with a temperature threshold at 
~150°C. In contrast, co-dosing H2O at a pressure of 1 Torr eliminated Si 
etching. These results suggest that F- is the active etch species for Si 
etching. QMS experiments also identified the volatile etch products as H2 
and SiF4. SiO2 non-etch vs SiO2 etch with co-adsorbed NH3 or (CH3)2NH also 
supported the idea that polar co-adsorbates convert the HF active species 
to HF2

-. Without polar co-adsorbates, F- species do not etch SiO2. With polar 
co-adsorbates, HF2

- species can etch SiO2. 

2:30pm AP+PS+TF-WeA-2 ZrO2 Thermal Atomic Layer Etching Using HF for 
Fluorination and TiCl4 for Ligand Exchange: Effect of Processing 
Parameters, Chen Li, Troy Colleran, University of Colorado Boulder; 
Beomseok Kim, Hanjin Lim, Samsung Electronics Co., Republic of Korea; 
Steven George, University of Colorado Boulder 

ZrO2 thermal atomic layer etching (ALE) can be performed using sequential 
surface modification and volatile release reactions. HF fluorinates the ZrO2 
surface to form a ZrF4 layer. TiCl4 then undergoes ligand-exchange and 
volatilizes the ZrF4 layer. In this study, the etch rate of ZrO2 ALE was 
evaluated as a function of various processing parameters such as pressure, 
temperature and exposure time. The initial ZrO2 films were grown by 
atomic layer deposition (ALD) using tetrakis(diethylamino) zirconium and 
H2O. The processing parameters during ZrO2 thermal ALE were examined 
using various techniques including quartz crystal microbalance (QCM), x-ray 
reflectivity (XRR), atomic force microscopy (AFM) and quadrupole mass 
spectrometry (QMS).In situ QCM experiments examined ZrO2 ALE at HF 
pressures from 0.1 to 0.9 Torr with fixed TiCl4 pressure and at TiCl4 
pressures from 0.2 to 2 Torr with fixed HF pressure. The mass of the ZrO2 
film decreased linearly with number of ALE cycles. The higher HF and TiCl4 
pressures led to higher ZrO2 etch rates. However, self-limiting behavior was 
observed at both low and high HF and TiCl4 pressures. The ZrO2 etching 
rates were also observed to increase at higher temperatures. These results 
illustrate that self-limiting reactions can occur over a range of reactant 
pressures and temperatures. At higher reactant pressures, the QCM 

analysis measured mass change per cycle (MCPC) values that varied from 
−49.4 to −118.6 ng/(cm2 cycle) at 200 and 300 °C, respectively. These 
MCPCs correspond to ZrO2 etch rates from 0.87 to 2.09 Å/cycle at 200 and 
300 °C, respectively. XRR measurements also confirmed the linear removal 
of ZrO2 versus number of ALE cycles and the etch rates. AFM measurements 
also studied the roughness of crystalline ZrO2 films after ALE. These 
crystalline films contained a mixture of monoclinic and tetragonal phases. 
The surface roughness increased with number of ALE cycles. However, 
higher precursor pressures at high temperatures produced a lower 
roughness increase. In addition, QMS analysis revealed the volatile etch 
products during the sequential HF and TiCl4 exposures on ZrO2 at 200, 250 
and 300 ℃. The signal intensity of the etch products increased at higher 
temperatures. H2O was monitored during the HF exposure when HF 
fluorinates ZrO2 to produce ZrF4. ZrCl4 was observed as the etch product 
and TiFCl3 was detected as the ligand-exchange product during the TiCl4 
exposure. These products confirm the ligand-exchange reaction between 
TiCl4 and ZrF4.This project was supported by Samsung Electronics Co., Ltd 
(IO230707-06660-01). 

2:45pm AP+PS+TF-WeA-3 SiO2 Etching by HF in a Liquid-Like H2O Layer in a 
Vacuum Environment, Samantha Rau, Micah Duffield, University of 
Colorado at Boulder; Antonio Rotondaro, Hanna Paddubrouskaya, Kate 
Abel, Tokyo Electron America, Inc.; Steven George, University of Colorado at 
Boulder 

Adsorbed H2O layers may be employed for etching by a liquid layer in a 
vacuum environment. Liquid-like H2O layers can form at H2O pressures 
around 10 Torr and temperatures around room temperature. Etchants may 
then be dissolved in the liquid-like H2O layers. These conditions allow many 
etching processes that are conducted in wet aqueous solutions to be 
extended to liquid-like H2O layers in vacuum. 

This study focused on SiO2 etching by HF in a liquid-like H2O layer in 
vacuum. The experiments were conducted in a warm-wall vacuum chamber 
designed with a sample stage that allowed for H2O liquid layer formation 
only on the cooled stage. The thickness of SiO2 films was measured using in 
situ spectroscopic ellipsometry as the SiO2 films were exposed to various 
H2O and HF pressures at different substrate temperatures. Studies were 
conducted at H2O pressures from 5 to 30 Torr, HF pressures from 2 to 6 Torr, 
exposures time from 2 to 20 s, and temperatures from 18.1 to 30.4 °C. The 
SiO2 films etched readily under these conditions. 

The SiO2 etch rate increased versus HF pressure. Figure 1 shows that as the 
HF pressure was increased from 2 to 6 Torr, at 30.4 °C with a H2O pressure 
of 15 Torr and exposure time of 5 s, the SiO2 etch rate increased from ~14 
Å/exposure to ~3315 Å/exposure, respectively. The SiO2 etching also 
increased versus H2O pressure. Figure 2 shows that as the H2O pressure was 
increased from 10 to 30 Torr, at 30.4 °C with a HF pressure of 3.5 Torr and 
exposure time of 5 s, the SiO2 etch rate increased from ~10 Å/exposure to 
~105 Å/exposure, respectively. The dramatic variation in SiO2 etch rates 
suggests that the thickness and composition of the liquid-like layer may be 
changing rapidly with HF and H2O pressure. 

The SiO2 etch rate also increased versus exposure time. As the exposure 
time increased from 2 to 20 s, at 30.4 °C with a H2O pressure of 10 Torr and 
HF pressure of 3.5 Torr, the SiO2 etch rate increased from ~6 Å/exposure to 
~150 Å/exposure, respectively. The SiO2 etch rate was also inversely 
dependent on sample temperature. Experiments were conducted at 
temperatures of 30.4°C, 27.2°C, and 18.1°C with a H2O pressure of 15 Torr, 
HF pressure of 3.5 Torr, and exposure time of 5 s. These studies yielded SiO2 
etch rates of ~33 Å/exposure, ~1564 Å/exposure, and ~3456 Å/exposure, 
respectively. The large increase of the SiO2 etch rate is attributed to the 
thicker liquid-like layer at lower temperatures. The thicker liquid-like layer 
may be able to more easily solvate the HF reactants and SiO2 etch products. 

3:00pm AP+PS+TF-WeA-4 Wet-Like Atomic Layer Etching of WCN by 
Applying the Leidenfrost Effect to Obtain Floating Nanomist-Assisted 
Vapor Etching, Thi-Thuy-Nga Nguyen, Nagoya University, Japan; Kazunori 
Shinoda, Kenji Maeda, Kenetsu Yokogawa, Masaru Izawa, Hitachi High-Tech 
Corp., Japan; Kenji Ishikawa, Masaru Hori, Nagoya University, Japan 

Semiconductor devices have been miniaturized to the nanometer scale. 
Work function metals, made from various metals like TiAlC, TiC, TiN, and 
WCN, are used in field effect transistor gate stacks. Precise control of 
isotropic and selective atomic layer etching (ALE) of thin metal gate 
materials in 3D nanostructures is crucial for the next-generation logic 
semiconductor devices. This requires minimizing damage from sputter 
effects in plasma ALE, high temperatures in thermal ALE, and pattern 
collapse in wet ALE. In our previous study, we developed a wet-like plasma 
etching method for a ternary metal carbide TiAlC [1]. This technique 
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combines the advantages of wet etching (high isotropy and selectivity) and 
dry etching (high controllability). By using high-density vapor plasma at 
medium pressures, we generated a rich radical source of reactive species to 
significantly increase the reaction rate with the sample surface. This opens 
an avenue for developing our new dry ALE method, named wet-like ALE. 

Here we have demonstrated the wet-like ALE for WCN material by 
sequentially exposing it to a rich radical source of O2 plasma for surface 
oxidation at a relatively low temperature of less than 40 oC and removal of 
the modified layer (WO3) by dissolving it in a highly volatile nanomist flow. 
The proposed nanomist phase is a mist-vapor phase with properties 
between the mist liquid and vapor phases, maintaining the wet properties 
of the liquid phase at a minimal mist size for nanodevice applications. At 
the Leidenfrost point, the nanomist floats on its own stable vapor cushion 
film over the whole sample surface [2]. By using the Leidenfrost effect, the 
modified layer can be dissolved in a stable vapor film existing under the 
floating nanomist or in a floating nanomist-assisted vapor. The nanomists 
were generated from liquids by our originally developed non-contact 
atomizer at room temperature. The high removal rate of the modified layer 
(WO3) was obtained at a temperature higher than 130 oC that is considered 
as the Leidenfrost point of the nanomist produced from the aqueous liquid 
mixture, in which the WCN surface is supposed to be etched by the floating 
nanomist-assisted vapor at medium pressures. Self-limiting oxidation and 
removal of WCN by nanomist were achieved in both steps of the wet-like 
ALE cycle. 

Acknowledgement 

We would like to thank Dr. Yoshihide Yamaguchi (Hitachi, Ltd., Japan) and 
Mr. KuangDa Sun (Nagoya University) for the previous discussions about 
Leidenfrost effect and mist generation, respectively. 

[1] T.T.N. Nguyen et al., Sci. Rep. 12, 20394 (2022). 

[2] B.S. Gottfried et al., Int. J. Heat Mass Transf. 9, 1167-1187 (1966). 

3:15pm AP+PS+TF-WeA-5 Thermal Atomic Layer Etching of Hafnium–
Zirconium Oxide (HZO) Using Organofluorides for Fluorination, Aziz 
Abdulagatov, Jonathan Partridge, University of Colorado at Boulder; 
Matthew Surman, ASM Microchemistry Ltd., Finland; Steven George, 
University of Colorado at Boulder 

Thermal atomic layer etching (ALE) of various materials has previously been 
achieved using sequential fluorination and ligand exchange reactions where 
HF has been used as the fluorination source.In this work, organofluorides 
were employed as an alternative to HF.The thermal ALE of Hf0.5Zr0.5O2 (HZO) 
was demonstrated using various organofluorides.The organofluorides were 
N,N-Diethyl-1,1,2,3,3,3-hexafluoropropylamine (Ishikawa’s reagent (IR)), 
1,1,2,2-tetrafluoroethyldimethylamine (TFEDMA) and diethylaminosulfur 
trifluoride (DAST). IR, TFEDMA and DAST are common deoxyfluorination 
reagents. 

HZO ALE was demonstrated using organofluoride exposure in combination 
with ozone (O3) and boron trichloride (BCl3) exposures. Ozone was used to 
remove carbon residue resulting from organofluoride adsorption. BCl3 was 
employed for ligand exchange with the fluorinated surface to form volatile 
Hf and Zr chlorides and BClxFy products. BCl3 can also undergo conversion 
with HZO. 

In situ spectroscopic ellipsometry (SE) observed the linear decrease of HZO 
film thickness. Under similar reaction conditions at 270 °C, crystalline HZO 
films with a thickness of 10 nm displayed etch rates of 0.1, 0.2, and 0.5 
Å/cycle, using IR, TFEDMA, and DAST, respectively. Etching amorphous HZO 
using IR yielded higher etch rates of 0.6 Å/cycle at 270 oC. The IR, O3 and 
BCl3 surface reactions were also determined to be self-limiting. 

Quadrupole mass spectrometry (QMS) was also utilized to study the IR-O3-
BCl3 etch process on crystalline ZrO2 powder at 270°C. During IR exposure, 
organic fragments and HF were detected indicating that HF is produced in 
situ by IR at 270 °C.During O3 exposure, combustion products were 
observed from the oxidation of organic residuals left from IR exposures. 
During BCl3 exposure, Hf and Zr chloride products, as well as BClxFy 
products, were produced by the ligand-exchange reactions. Concurrently, 
boroxine ring (B3O3Cl3) fragments were monitored and indicated the 
conversion of HZO to B2O3. 

3:30pm AP+PS+TF-WeA-6 Selective Atomic Layer Etching of SiO2 over Si3N4 
via TMA Surface modification and SF6 Remote Plasma, Jieun Kim, Min 
Kyun Sohn, Sun Kyu Jung, Min-A Park, Jin Ha Kim, Jaeseoung Park, Subin 
Heo, Sang-Hoon Kim, Jeong Woo Park, Seong Hyun Lee, Dongwoo Suh, 
Electronics and Telecommunications Research Institute, Republic of Korea 

Precise etch selectivity between SiO2 and Si3N4 is critical in advanced 
semiconductor fabrication processes, especially for applications such as 
spacer patterning in Gate-All-Around Field-Effect Transistors (GAAFETs) and 
multilayer structuring in 3D NAND devices. While selective etching of Si3N4 
over SiO2 has been widely studied using plasma chemistries such as 
SF6/H2/Ar/He, NF3/O2, and CF4/O2/N2 gas mixtures,1-3 achieving atomic-scale 
precision in the reverse case —preferentially etching SiO2 over Si3N4—
remains challenging. 

In this work, we present an atomic layer etching (ALE) approach that 
enables highly selective etching of SiO2 over Si3N4 through surface chemical 
engineering. The process sequence comprises four steps —
trimethylaluminum (TMA) surface modification, Ar purge, SF6 remote 
plasma exposure, and Ar purge— perfomed at 300 °C, 5 Torr, with an SF6 
flow rate of 50 sccm. 

Under standard SF6 plasma conditions, Si3N4 is typically etched more rapidly 
than SiO2 due to the greater susceptibility of Si–N bonds to fluorine radicals. 
However, we found that incorporating a TMA surface modification step 
effectively inverts this trend. Chemical interactions at the surface are 
believed to yield Al–O–Si linkages on SiO2 and Al–N–Si on Si3N4, leading to 
distinct reactivities during subsequent F-radical exposure. The Al–O–Si sites 
promote the formation of volatile AlF3 and SiF4, whereas Al–N–Si structures 
exhibit much lower fluorine reactivity. 

This chemistry-driven mechanism enabled a marked difference in etch per 
cycle EPC, with SiO2 reaching 0.49 Å/cycle and Si3N4 reaching 0.05 Å/cycle, 
resulting in a selectivity close to 10:1. Whereas conventional atomic layer 
plasma etching using CH2F2/O2/N2 gas mixtures achieves selectivity through 
physical passivation or polymer deposition—often leading to surface 
damage or limited thickness control—our method, based on surface 
chemical modification and remote plasma exposure, enables damage-free 
etching and precise, layer-by-layer thickness control by decoupling chemical 
reactivity from ion bombardment. These findings suggest that surface 
modification-based selectivity tuning can serve as a viable strategy for 
precision etching in next-generation logic and memory device integration. 

Reference 

1. Proceedings of the International Conference on Advances and 
Applications in Plasma Physics (Aapp 2019), 2019. 

2. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 
1989, 7 (3), 686-690. 

3. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 
1999, 17 (6), 3179-3184. 

4. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 
2021, 39 (5). 

4:15pm AP+PS+TF-WeA-9 Damage-Free Atomic Layer Etching of SiO₂ Using 
Ultra-Low Electron Temperature Plasma, Junyoung Park, Nayeon Kim, 
Jung-Eun Choi, Yujin Yeo, Min-Seok Kim, Chang-Min Lim, Beom-Jun Seo, 
Chin-Wook Chung, Hanyang University, Korea 

This work proposes an atomic layer etching (ALE) process utilizing ultra-low 
electron temperature (ULET) plasma, a damage-free plasma technique. The 
ULET plasma effectively suppresses charging and radiation damage due to 
its extremely low electron temperature, while its narrow ion energy 
distribution enables precise control of ion energy. These properties of ULET 
plasma facilitate faster CF polymer deposition during the surface 
modification step and induce sputtering at higher Vdc. After ULET plasma 
ALE, the surface roughness is approximately 3 nm, which is about one-fifth 
the level of that obtained with conventional plasma processes. In addition, 
the ALE process window is twice as wide as that of traditional methods, 
significantly improving process stability. These characteristics demonstrate 
that ULET plasma-based ALE is a promising technology for damage-free, 
atomic-scale etching required in next-generation semiconductor 
manufacturing. 
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4:30pm AP+PS+TF-WeA-10 Atomic Layer Etching of Sputter-Deposited Aln 
Thin Films in Cl2-Ar Plasmas, Iurii Nesterenko, Silicon Austria Labs GmbH, 
Austria; Jon Farr, Applied Materials, Inc.; Steffen Harzenetter, Applied 
Materials, Inc., Germany; Dmytro Solonenko, Benjamin Kalas, Thang Dao, 
Silicon Austria Labs GmbH, Austria; Julian Schulze, Ruhr University Bochum, 
Germany; Nikolai Andrianov, Silicon Austria Labs GmbH, Austria 

Aluminum nitride (AlN) is a widely used material in micro- and 
nanoelectronics, particularly in photonics and MEMS devices. However, one 
of the critical challenges in the fabrication of AlN-based devices is achieving 
precise nanoscale etching while maintaining smooth surfaces and well-
defined etch profiles. Atomic Layer Etching (ALE) is a promising approach 
the above-mentioned problems, which are particularly crucial in photonic 
applications, where surface roughness and deviations in profile angles can 
result in optical losses and inefficient mode confinement. 
 

This study investigates the ALE of AlN thin films deposited via sputter 
deposition on an 8-inch wafer. The wafer was diced into 2 × 2 cm coupons, 
which were then attached to a SiO₂ thermal oxide carrier wafer. The 
experiments were performed in an Applied Materials™ Centura™ DTM 
Chamber using Cl₂ and Ar gases for the modification (Cl step) and ion 
bombardment (Ar step) steps, respectively. The thickness of the AlN thin 
films was measured via spectroscopic ellipsometry (Semilab SE-2000). Also, 
the ion energy distribution function (IEDF) was analyzed using an ion 
energy analyzer (Impedance Quantum). 
 

The feasibility of ALE for sputter-deposited AlN thin films was successfully 
demonstrated. The etch per cycle (EPC) was found to be approximately a 
single monolayer of the wurtzite AlN crystal structure (Fig.1). The ALE 
energy window was determined by analyzing the IEDFs in the Ar step, 
revealing the energy range of around 75 eV, which is consistent with the 
previously reported data in the literature [1]. Furthermore, measurements 
of the AlN sputtering threshold under Ar bombardment (Fig. 1) indicated 
minimal sputtering contributions, suggesting that the synergy of the 
process could approach 100%. Further investigations will be conducted to 
quantify this synergy more accurately. Moreover, it was determined that 
the process is linear, e.g. the EPC is constant against the number of cycles 
(Fig.2). The AlN RMS roughness after processing within the ALE energy 
window is around 570pm (Fig.3), which is lower than the original material 
roughness of 3nm. 
 

Future work will also focus on optimizing the process by minimizing the 
duration of the Ar, Cl, and purge steps. The optimization of the Cl step will 
be complemented by X-ray Photoelectron Spectroscopy (XPS) to gain 
deeper insights into the surface chlorination mechanism. 

[1] T. Faraz, Y. G. P. Verstappen, M. A. Verheijen, N. J. Chittock, J. E. Lopez, E. 
Heijdra, W. J. H. Van Gennip, W. M. M. Kessels, and A. J. M. Mackus, Precise 
ion energy control with tailored waveform biasing for atomic scale 
processing, Journal of Applied Physics 128, 213301 (2020). 

4:45pm AP+PS+TF-WeA-11 Sub-Surface TiO2 Atomic Layer Etching (ALE) 
Through W Films, Hannah Margavio, Gregory Parsons, North Carolina 
State University 

The growing complexity of microelectronic architectures requires the 
development of novel atomic-scale fabrication techniques. Traditional 
semiconductor processing relies on separate deposition and etching steps. 
For example, a common fabrication technique known as etch-replacement 
deposition proceeds with W atomic layer deposition (ALD) and TiO2 
chemical vapor etching (CVE) occurring locally via SiH4 and WF6 exposure, 
yielding a W film thickness roughly equal to the removed TiO2 film. In the 
etch replacement process, WF6 converts TiO2 into an intermediate solid 
phase, TiWOxFy, which becomes volatile upon further WF6 exposure. 
Alternatively, TiWOxFy can be reduced by SiH4, resulting in a W-rich film. 

In this work, we address the need for advanced and unique processing for 
more complex metal nanostructures using atomic layer etching (ALE). We 
demonstrate the fabrication of intricate metal architectures via sub-surface 
etching of TiO2 by controlling WF6, MoF6, and BCl3 etching conditions after 
W ALD. First, 30 W ALD cycles were deposited on TiO2/Si line patterns 
resulting in ~20 nm of W deposition on TiO2. Following deposition, the film 
stack was exposed to 10, 80, and 150 WF6 individual doses. After WF6 
exposure, it was found the W layer remained and the underlying TiO2 layer 
was etched away as a function of CVE cycles, creating an air gap between 
the patterned TiO2 lines and the W layer. We will show when additional WF6 
doses were exposed to the film stack, the air gap spacing increased. 
Similarly, MoF6 doses after W ALD initiated sub-surface TiO2 CVE. With 

MoF6, we were able to elucidate the sub-surface etching mechanism via 
STEM EDS mapping; we observed metal fluoride diffused through the W 
film to react with the underlying TiO2, while etch products diffused out. 
Compared to WF6 and MoF6 driven CVE, ALE using sequential WF6 and BCl3 
doses accelerated etching and allowed greater control of TiO2 removal. By 
integrating W ALD and TiO2 ALE with sequential WF6 and BCl3 cycles on 
patterned TiO2 structures, unique film stacks with tunable, uniform air gaps 
were fabricated. 

5:00pm AP+PS+TF-WeA-12 Pulsed Plasma Strategies for High-Precision 
Pseudo-Atomic Layer Etching, Maryam Khaji, University of Michigan; 
Qinzhen Hao, Mahmoud A. I. Elgarhy, Jeremy Mettler, University of 
Houston; Hyunjae Lee, Sang Ki Nam, Mechatronics Research, Samsung 
Electronics Co, Republic of Korea; Vincent Donnelly, University of Houston; 
Mark J. Kushner, University of Michigan 

Conventional plasma-based atomic layer etching (ALE) involves two self-
limiting steps: passivation, where radicals (e.g., Cl) passivate the top layer of 
the substrate (e.g., silicon) to form SiClx; and etching, where the passivated 
layer is selectively removed by an ion-rich flux with its energy tuned to etch 
only the passivated material [1]. In spite its high precision, ALE is time-
consuming due to the need to evacuate the chamber between steps and so 
is challenged to incorporate into high volume manufacturing (HVM). 
Strategies are needed to maintain the precision of ALE while increasing its 
processing speed. 

In this work, we report on a computational investigation of strategies to 
achieve rapid and precise Pseudo-Atomic Layer Etching (P-ALE) processes. 
This investigation is conducted for an inductively coupled plasma (ICP) 
reactor with RF or dc power applied to the substrate using Ar/Cl2 mixtures 
for Si etching. Reactor scale plasma properties are addressed using the 
Hybrid Plasma Equipment Model (HPEM). Feature profile evolution is 
evaluated using the Monte Carlo Feature Profile Model (MCFPM) [2]. 

We will discuss strategies for P-ALE whose goal is to maintain the dual-
process (passivation-etching) of conventional ALE while using a single gas 
mixture. These strategies use combinations of pulsed source (ICP) and bias 
powers, and electrode biasing, that produce a passivation phase where ion 
energies are low, and that appears to be ion starved; followed by rapid etch 
phase where additional passivation is low, and that appears to be neutral 
starved. To achieve these ends, plasma potential and dc bias must be 
carefully managed. Comparisons are made to experimental data. 

This work was supported by Samsung Electronics and the Department of 
Energy Office of Fusion Energy Sciences. 

[1] C. Huard et al., J. Phys. D: Appl. Phys. 51 155201 (2018) 

[2] C. Huard et al., J. Vac. Sci. Tech. A 35, 05C301 (2017). 

5:15pm AP+PS+TF-WeA-13 Development of Atomic Layer Etching Process 
Dedicated to Diamond Electronic Devices, Marine Régnier, Univ. Grenoble 
Alpes, CNRS, Grenoble INP, Institut Néel; Institute of Applied Physics, 
University of Tsukuba; Japanese-French Laboratory for Semiconductor 
Physics and Technology J-FAST, CNRS, Univ. Grenoble Alpes, University of 
Tsukuba, France; Aboulaye Traoré, LSPM, CNRS, Université Sorbonne Paris 
Nord, France; Marceline Bonvalot, Univ. Grenoble Alpes, CNRS, Grenoble 
INP, LTM; Japanese-French Laboratory for Semiconductor Physics and 
Technology J-FAST, CNRS, Univ. Grenoble Alpes, University of Tsukuba, 
France; Etienne Gheeraert, Univ. Grenoble Alpes, CNRS, Grenoble INP, 
Institut Néel; Institute of Applied Physics, University of Tsukuba; Japanese-
French Laboratory for Semiconductor Physics and Technology J-FAST, CNRS, 
Univ. Grenoble Alpes, University of Tsukuba, France 

Diamond power devices, such as Schottky diodes and MOSFETs are 
currently being intensively investigated for possible application in power 
electronics and require dedicated fabrication processes to achieve 
adequate operating performances. Conventional etching techniques often 
lead to defects, surface roughness and sub-surface damages, which can 
significantly degrade carrier mobility and breakdown voltage of power 
devices. Thus, it becomes essential to develop diamond etching processes 
minimizing induced defects. Atomic layer etching (ALE) is a very soft etching 
technique involving two successive self-limiting and independent reactions. 
The first self-limiting reaction involves modifying the surface of a material 
by forming an ultra-thin reactive surface layer, while the second self-
limiting reaction consists in the sputtering of the modified layer while 
keeping the underlayer intact. The repetition of these two reactions allows 
the removal of a layer of materials with a defect-free etched surfaces and 
sub-surfaces at atomic-scale precision. The first report of ALE of diamond 
dates back to 1988 [1], however, since then, no further studies have been 
reported. 
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In this work, the ALE process optimization of (100) diamond is presented. 
The ALE process is achieved by first modifying the surface and then using a 
soft plasma to induce the selective removal of this modified surface. 
Experiments have been performed in a standard inductively coupled 
plasma reactive ion etching equipment with in-situ plasma monitoring by 
optical emission spectroscopy. They have been characterized as a function 
of the etching rate per cycle (EPC) estimated from diamond etched depth 
after 100 ALE cycles. The impact of the incident ionic bombardment kinetic 
energy during the 2nd ALE reaction has been evaluated from the dc self-bias 
voltage (VDC). Results show a clear plateau of approximatively 5 V (Fig. 1), 
called ALE window, demonstrating the self-limiting effect of the etching 
process within one ALE cycle. The etching rate is of 7.1 Å per cycle, 
corresponding to the removal of two (100) diamond monolayers per cycle. 
Finally, synergy factor has been calculated. Synergy measures the effect of 
combining the two ALE steps. Separately, 100 cycles of step 1 then 100 
cycles of step 2 leads to an etching rate of 4.0 Å per cycle. But 100 cycles of 
(1+2) steps lead to 7.1 Å per cycle, i.e. a synergy of 43%. This again 
demonstrate the effectiveness of the ALE process. 

All these results will be presented in detail and discussed in the light of 
literature data. 
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5:30pm AP+PS+TF-WeA-14 Atomic Layer Etching of Yttrium 
Orthovanadate Using Sequential Exposures of H2 and SF6/Ar Plasmas, 
Mariya Ezzy, Emanuel Green, Andrei Faraon, Austin Minnich, California 
Institute of Technology 

Yttrium orthovanadate (YVO4, YVO) is a promising host crystal for rare-
earth ion (REI)-based quantum interfaces, such as ensemble-based 
quantum memories and single REIs in nanophotonic cavities, because of its 
high symmetry and high oscillator strength transitions. However, 
nanofabrication techniques for such complex oxide crystals are currently 
limited to physical etching techniques such as focused ion beam (FIB) 
milling. These physical etching techniques limit the quality factor (Q) of 
these nanophotonic resonator cavities, which are an order of magnitude 
less than their theoretical predictions, largely due to surface roughness 
scattering losses. Atomic layer etching (ALE) has the potential to mitigate 
this because of its ability to smooth surfaces down to the sub-nanometer 
scale. Here, we report the first ALE process for YVO using an H2 plasma 
modification step followed by an SF6/Ar plasma removal step. Preliminary 
results indicate an etch rate of 0.35 Å per cycle. The etch rates, surface 
morphology, and surface chemical composition are characterized using 
atomic force microscopy and x-ray photoelectron spectroscopy (XPS). The 
effect of ALE on the Q factor of FIB-milled nanophotonic cavities will also be 
discussed. 

5:45pm AP+PS+TF-WeA-15 Mechanisms of Atomic Layer Etching of Ni3Al, 
Taylor G. Smith, University of California, Los Angeles; Jean-François de 
Marneffe, IMEC, Belgium; Jane P. Chang, University of California, Los 
Angeles 

New metals and alloys are being investigated as potential replacements to 
TaBN in the absorber layer of extreme ultraviolet (EUV) lithography masks. 
Among potential candidates, Ni3Al is particularly promising because it has 
both a high extinction coefficient and an index of refraction close to 1. A 
major hurdle in integration is anisotropically etching Ni3Al selective to Ru, 
the 2-3 nm capping layer underneath the Ni3Al absorber, with previously 
developed reactive ion etch and oxygen plasma-based atomic layer etch 
(ALE) having selectivities of 0.4 and 0.6, respectively. Better selectivity could 
be obtained through an ALE process based on cycles of nitrogen plasma, 
which does not spontaneously form volatile Ru compounds. 

In this work, a Ni3Al ALE process using nitrogen plasma, formic acid vapor, 
and Ar+ ion beam sputtering is investigated. The three step ALE process was 
shown to etch blanket Ni3Al films at a rate of 1.0 nm/cycle. The self-limiting 
nature of the ALE process was examined by varying the duration of the 
nitridation, FA vapor, and Ar+ ion beam steps one at a time and measuring 
the resulting etch rate per cycle after 10 ALE cycles. These experiments 
showed that increasing the low energy Ar+ ion beam served only to remove 
residual formate from the surface prior to starting the subsequent ALE cycle 
and was not responsible for etching the Ni3Al. The anisotropy of the Ni3Al 
ALE process was examined using specially prepared samples of Ni3Al 
deposited over patterned Si which had an initial sidewall Ni3Al thickness of 
17 nm. Scanning electron microscopy (SEM) showed that 30 ALE cycles 
redeposited material on the feature sidewalls, increasing the sidewall 
thickness to 34 nm at the bottom of the patterned feature and 21 nm near 
the top. The etch mechanism, particularly the volatile Al product, was 

investigated by comparing the etch rates of Ni, Ni3Al, NiAl, and Al films. Ni 
etched at a rate of 1.3 nm/cycle1 and Ni3Al at a rate of 1.0 nm/cycle, while 
NiAl and Al were not etched by this ALE process. Because films with high Al 
content did not etch, Ni clearly plays a role in the removal of Al. Possible 
volatile etch products of Al therefore include a dimeric complex containing 
both a Ni and Al atom, or trimethylaluminum from Al reacting with CH3 
formed by Ni-catalyzed hydrogenation of formic acid. Finally, the etch rate 
of blanket Ru films was determined to be 0.5 nm/cycle, demonstrating a 2:1 
selectivity between Ni3Al and Ru—a major advance toward integration of 
Ni3Al in EUV masks. 

1T.G. Smith, A.M. Ali, J.F. de Marneffe, J.P. Chang, JVST A 42, 022602 (2024). 

6:00pm AP+PS+TF-WeA-16 Atomic Layer Etching for Vertical Trench 
Control and Electrical Optimization in HDLK Materials, Sanghyun Lee, Keun 
Hee Bai, Samsung Electronics, Republic of Korea 

As device scaling continues, it becomes increasingly challenging to enhance 
device performance. In order to improve device performance, reducing 
resistance and capacitance in the BEOL (Back-End of Line) is especially 
important. Among various methods, minimizing damage to low-k dielectric 
materials during patterning processes has become a key challenge in BEOL 
integration. In this work, we suggest using Atomic Layer Etching (ALE) to 
overcome this problem, along with the selection of suitable low-k 
materials. ALE enhances controllability over surface reactions and profile 
formation by utilizing low ion energy, which enables the achievement of 
vertical profiles while simultaneously minimizing Plasma-Induced Damage 
(PID). The proposed ALE process utilizes a fluorocarbon-based surface 
modification step (C₄F₈), followed by a low-energy O₂ plasma step for 
selective carbon removal. This cyclic approach enables atomic-scale 
material removal with minimal physical damage, significantly reducing ion 
bombardment effects. To evaluate the effect of ALE on different low-k 
materials, we tested various High-Density Low-k (HDLK) samples with 
differences in k-value, modulus, and carbon composition. As a result, both 
low-k damage and vertical trench profile integrity were substantially 
improved, with smoother sidewalls and better verticality observed. The 
process performance was evaluated through detailed compositional 
analysis (XPS, EDX), PID characterization, and electrical measurements. The 
results confirmed that the proposed ALE method effectively reduced 
damage to low-k materials while enhancing profile control. Consequently, it 
demonstrates strong potential as a next-generation patterning solution for 
advanced BEOL integration. 
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