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8:00am AP+PS+TF-WeM-1 High-Temperature Thermal ALD of SiO2 Using 
Chlorosilane and Aminosilane Precursors: A Comparative Study, Okhyeon 
Kim, Tanzia Chowdhury, Changgyu Kim, Hye-Lee Kim, Sejong University, 
Republic of Korea; Jae-Seok An, Jung Woo Park, Hansol Chemical Co., Ltd., 
Republic of Korea; Won-Jun Lee, Sejong University, Republic of Korea 

As the number of layers in three-dimensional vertical NAND memory 
devices continues to increase, the conformal deposition of high-quality SiO2 
films in high-aspect-ratio (HAR) structures at high temperatures becomes 
increasingly critical. Atomic layer deposition (ALD) is the ideal technology 
for this application, offering atomic-level thickness control and excellent 
conformality. However, most existing studies on SiO2 ALD have focused on 
low-temperature plasma-enhanced ALD processes, which are inadequate 
for producing high-quality films in HAR structures. In contrast, high-
temperature thermal ALD of SiO2 films remains underexplored. In this work, 
we investigated high-temperature (>600 oC) thermal ALD of SiO2 using 
chlorosilane and aminosilane as Si precursors and compared the 
performance of silicon precursors. Density functional theory (DFT) 
calculations were first performed to evaluate the precursors based on their 
thermal stability. Next, the maximum ALD temperature was determined 
experimentally based on self-limiting behavior and confirmed by step 
coverage analysis in HAR patterns. Film composition and impurity levels 
were analyzed by X-ray photoelectron spectroscopy and dynamic secondary 
ion mass spectroscopy. Stoichiometric SiO2 films were deposited using both 
chlorosilane and aminosilane precursors, but pure ALD processes were 
possible at higher temperatures with chlorosilane precursors due to their 
better thermal stability. Chlorosilane precursors also resulted in lower 
impurity levels in the film due to their simpler molecular structures, which 
is consistent with the better electrical properties and wet etch resistance 
observed. This study combines theoretical and experimental results to 
provide a basis for advancing high-temperature thermal ALD processes of 
SiO2 and related materials. 

8:15am AP+PS+TF-WeM-2 Catalyzed Molecular Layer Deposition of 
Methylene-Bridged Silicon Oxycarbide and the Effect of Annealing on 
Molecular Structure and Electrical Properties, Man Hou Vong, Seoyeon 
Kim, Michael Dickey, Gregory Parsons, North Carolina State University 

Silicon oxycarbide (SiOC-H) is a low-k dielectric material capable of 
minimizing parasitic capacitance between interconnects, thereby lowering 
the signal delay. As feature nodes in integrated circuits continue to shrink, 
deposition processes that offer precise control over film thickness and 
conformity are increasingly critical. Molecular layer deposition (MLD), a 
vapor deposition technique that deposits molecular layers via self-limiting 
surface reactions driven by sequential reactant exposure, offers a promising 
route to meet these demands. Previous studies have demonstrated the 
feasibility of MLD for methylene-bridged (Si-CH2-Si) SiOC-H using 
bis(trichlorosilyl)methane (BTCSM) as the precursor and water as the 
oxidant at moderate temperatures (< 100°C). However, the reported 
growth rate was limited despite the high reactant exposure. We 
hypothesize that the limited growth arises from the inefficient direct 
reaction between the Si-Cl on BTCSM and the Si-OH on the substrate 
surface. Herein, we introduce a catalyst to overcome the growth limitation 
in SiOC-H MLD using BTCSM and water. The results show that incorporating 
catalyst in MLD of SiOC-H at 50°C increases the growth rate by more than 
ten times under identical reactant exposure. Furthermore, upon annealing 
at temperatures from 250°C to 550°C, the Si-CH2-Si bridges undergo a 
transformation into terminal methyl groups (Si-CH3) via reaction with 
adjacent Si-OH groups. This transformation increases steric hinderance 
within the film compared to methylene bridges, reducing the film density 
and ultimately lowering the permittivity of the films. Overall, the findings in 
this work provide insights into the role of the catalyst in SiOC-H MLD and 
highlight its potential for enhancing deposition efficiency for scalable 
manufacturing in advanced microelectronics fabrication. 

8:30am AP+PS+TF-WeM-3 The Effect of Precursor Choice and Process 
Temperature on the Properties of ALD Films, Theodosia Gougousi, 
Nimarta Chowdhary, UMBC 

Precursor choice and process temperature play a critical role in determining 
the properties of thin films deposited by Atomic Layer Deposition (ALD). In 
this study, we examine the impact of deposition temperature on the 

properties of ALD metal oxide films grown using amide-based precursors: 
tetrakis dimethyl amino titanium (TDMAT) and tetrakis dimethyl amino 
hafnium (TDMAHf) with water as the oxidizer. 

We observe distinct differences between the two precursors. For the Ti 
process, we find a significant influence of temperature on phase formation 
and nitrogen incorporation into the films. Films deposited at 100°C 
crystallize in the anatase phase after inert annealing, while those deposited 
between 150–300°C transition to the rutile phase. At 350°C, films exhibit 
mixed phases that vary with thickness. Additionally, films deposited at 
temperatures above 200°C incorporate oxynitride bonding, significantly 
affecting both their linear and nonlinear optical properties and electrical 
conductivity. These variations are most pronounced between 200 and 
275°C, a temperature range commonly considered within the "ALD 
window" for this process. 

In contrast, for the Hf process, we do not observe any nitrogen 
incorporation in the films even at 400℃ and the optical and electrical 
properties of the films are consistent across deposition temperatures. Our 
findings reveal previously unreported reaction pathways that significantly 
influence the optical and insulating properties of TiO2 ALD films. 
Furthermore, we highlight significant differences in the behavior of 
precursors from the same family emphasizing that extrapolating properties 
from one materials system to another can be misleading. 

This study provides significant insights into the temperature-dependent 
behavior of ALD-grown TiO2 and HfO2 films, highlighting previously 
unreported reaction pathways. These findings offer valuable guidance for 
optimizing film properties in optoelectronic applications and underscore 
the importance of precise precursor selection in ALD processes. 

8:45am AP+PS+TF-WeM-4 Microwave Enhanced Atomic Layer Deposition 
(MW-ALD) of HfO2, Jessica Haglund, John Conley Jr., Oregon State 
University 

Though beneficial for many applications, the low temperatures typical of 
ALD can result in residual impurities from unreacted precursors. This can 
lead to degraded electrical, physical, and optical properties. To improve film 
quality, post deposition annealing (PDA) can be used. However, the high 
temperatures necessary for PDAs can exceed thermal budgets, especially in 
back end of line processing. It has been demonstrated that post-deposition 
microwave annealing can improve film quality and result in lower process 
temperature.1 An alternate way to improve film quality is energy enhanced 
ALD (EE-ALD), in which energy is added during the ALD cycles. Previously, 
in-situ rapid thermal anneal, plasma, and UV treatments have been added 
to ALD cycles to drive impurities from films during deposition.2-6 We have 
recently introduced in-situ microwave enhanced ALD (MW-ALD) using 
Al2O3.8 Here we discuss low temperature MW-ALD of HfO2. 

A custom MKS microwave generator and helical antenna were integrated 
into a Picosun R200. HfO2 was deposited at 150 °C using 100 TEMA-
Hf/N2/H2O/N2 ALD cycles of 1/120/0.2/120 sec. A 30 s 400 W microwave 
(MW) pulse (without plasma generation) was used during either the TEMA-
Hf or the H2O purge. Film thickness and refractive index were analyzed 
using a mapping Film Sense FS-1 ellipsometer. MW pulses during the H2O 
purge had minimal impact on film thickness and refractive index. However, 
the same MW pulse during the TEMA-Hf purge resulted in a ~50% increase 
in thickness and an increase in refractive index. This is consistent with our 
work on MW-ALD of Al2O3 which found an increase in film quality when the 
pulse was applied during the TMA pulse as compared to the water pulse.8 

Additional electrical data will be presented as well as results for depositions 
at 250 °C. 
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9:00am AP+PS+TF-WeM-5 In Situ Studies of Ald Hf0.5Zr0.5O2 by 
Spectroscopic Ellipsometry and Reflection Absorption Infrared 
Spectroscopy, Stijn van der Heijden, Alex Neefs, Erwin Kessels, Bart Macco, 
Eindhoven University of Technology, Netherlands 

Ferroelectric Hf₀.₅Zr₀.₅O₂ (HZO) is widely recognized as a leading material 
for next-generation non-volatile memory technologies, offering excellent 
scalability and seamless integration with CMOS processing. We have 
developed an atomic layer deposition (ALD) process for HZO using 
metalorganic precursors—HfCp(NMe2)3 and ZrCp(NMe2)3 —in combination 
with ozone as the oxygen source. This process enables controlled 
deposition with precise Hf:Zr stoichiometry and uniform film growth under 
optimized conditions. 

In situ spectroscopic ellipsometry (SE) on an Oxford Instruments FlexAL was 
used extensively during process development to monitor film growth in real 
time and to extract growth-per-cycle data. Additionally, full TiN/HZO/TiN 
capacitor stacks were fabricated in a single ALD sequence within the same 
reactor, allowing us to track film evolution throughout the stack formation. 
This provided detailed insight into the nucleation behavior and the 
formation of interfacial layers. 

To gain a deeper understanding of the surface chemistry, we employed in 
situ reflection absorption infrared spectroscopy (RAIRS) using a home-built 
reactor. The RAIRS analysis revealed that formate groups, generated during 
the ozone pulse, act as active surface sites for precursor adsorption in both 
the HfCp(NMe2)3 and ZrCp(NMe2)3 processes. 

Finally, we correlate the findings from SE and RAIRS with the electrical 
performance of the TiN/HZO/TiN capacitors, offering an integrated view of 
how surface chemistry and film nucleation influence ferroelectric behavior. 

9:15am AP+PS+TF-WeM-6 Thermal Stability of HfO2 by Incorporating 
Al2O3 in a MIM Capacitor by 200 mm Batch-ALD, Partha Mukhopadhyay, 
Tokyo Electron America; Ivan Fletcher, Zuriel Caribe, Anton deVilliers, Jim 
Fulford, Tokyo Electron America, USA 

This work investigates the thermal stability of HfO2-Al2O3 laminated high-k 
dielectrics deposited by the high-volume batch atomic layer deposition 
(ALD) method. At higher crystallization temperatures HfO2 converts from 
amorphous to polycrystalline and induces nonuniformity in film thickness. 
The incorporation of Al2O3 into the HfO2 film forms an HfAlO alloy which 
presents excellent thermal stability compared to pure HfO2 when annealed 
at 650°C. Cross-sectional TEM, SIMS and XPS profiles demonstrate the 
interfacial reaction of these ultra-thin layers where the core-level energy 
states, Hf4f and Al2p peaks showed a shift to higher binding energy from 
those of pure HfO2 upon Al2O3 incorporation (Fig. S2). It is mainly because 
the Al covalence changes the bonding characteristics and HfO2 becomes 
more ionic, therefore, the dissociation of the alloyed film is effectively 
suppressed compared to a pure HfO2 film, indicating an enhanced thermal 
stability of HfAlO. The fabricated MIM capacitor of low Al-content 
Hf0.69Al0.31O alloy exhibits a higher capacitance density (CpD) of 12.46 
fF/μm2, ~29% better than HfO2 and dielectric constant of κ>22 than HfO2. 
The present research indicates a small amount of Al (0.31) incorporation in 
HfO2 extends its quantization temperature due to stabilizing its crystal 
phase by reducing oxygen vacancies and traps. It remarkably improved 
electrical characteristics under thermal stress compared to broken-down 
HfO2 capacitors under annealing (Fig. S3). While a higher Al content 
Hf0.44Al0.56O alloy shows excellent thermal stability while possessing 68% 
higher κ than an Al2O3 capacitor. It also demonstrated the highest 
breakdown voltage (EBV) of 8 MV/cm and low leakage among the samples. 
After annealing the degradation of EBV of the HfO2 capacitor is nearly 94% 
while the HfAl0.31O capacitor faces only 19% (Fig S4). These thin multilayer 
alloys show excellent relative capacitance variation over the voltage with 
high CpD, κ-value, low leakage of 10 nA/cm2@3MV/cm, suitable for higher 
thermal budget BEOL, and interposer process integration for various high 
bandwidth RF and low-cost memory applications with smaller chip area. 

9:30am AP+PS+TF-WeM-7 Highly Crystalline ZrO2 Films under 2 nm by 
Atomic Layer Modulation, Wonjoong Kim, Incheon National University, 
Republic of Korea; Ngoc Le Trinh, Incheon National University, Viet Nam; 
Bonwook Gu, incheon National University, Republic of Korea; Byungha 
Kwak, Ajou University, Republic of Korea; Hyunmi Kim, Hyeongkeun Kim, 
Korea Electronics Technology Institute, Republic of Korea; Youngho Kang, 
incheon National University, Republic of Korea; Il kwon Oh, ajou University, 
Republic of Korea; Han-Bo-Ram Lee, Incheon National University, Republic 
of Korea 

As the dimensions of silicon-based devices continue to shrink, achieving 
both high capacitance and low leakage current becomes increasingly 
challenging. In particular, the corresponding reduction in thin film thickness 

makes it difficult to preserve critical physical properties, including 
crystallinity, thermal stability, and electrical performance. In this work, we 
investigated yttrium-doped zirconium oxide (YZO) thin films fabricated 
using atomic layer modulation (ALM), a technique based on atomic layer 
deposition (ALD). In the ALM process, the surface is sequentially exposed to 
two precursors with an intervening purging step between each exposure, 
followed by a reaction with a counter-reactant, resulting in the growth of 
the YZO film within a single atomic layer. The ratio of Y to Zr in the ALM film 
is determined by the steric hindrance and chemical reactivity of the 
precursors with the surface. To design and interpret the experimental 
process, two theoretical approaches—density functional theory (DFT) and 
Monte Carlo (MC) simulations—were employed to examine the precursor 
interactions and their impact on film composition. In ALM films, Y atoms 
are located closer to Zr atoms, leading to the formation of Y–O–Zr bonds in 
both the lateral and vertical directions within several atomic layers. 
Consequently, the ALM film requires a lower energy barrier for diffusion to 
form the YZO crystalline phase, which enhances film density and improves 
crystallinity. As a result, YZO films deposited via the ALM process exhibit 
approximately 250 times lower leakage current density compared to the 
conventional YZO films fabricated using the ALD under a thickness of 2 nm. 
This key finding highlights that YZO films prepared by ALM achieve both an 
increased dielectric constant and reduced leakage current density at low 
thicknesses, demonstrating their potential as promising materials for future 
silicon device applications. 

9:45am AP+PS+TF-WeM-8 Influence of Molecular Structure on Ruthenium 
Deposition: An in Situ Study Using Simultaneous Spectroscopic 
Ellipsometry and Quadrupole Mass Spectrometry, Terrick McNealy-James, 
University of Central Florida; Xin Kang, University of Florida, Gainesville; 
Luis Tomar, University of Central Florida; Johnathon Johnson, University of 
Florida, Gainesville; Novia Berriel, Taylor Currie, Titel Jurca, University of 
Central Florida; Lisa McElwee-White, University of Florida, Gainesville; 
Parag Banerjee, University of Central Florida 

Ruthenium (Ru)with its low bulk resistivity and high work function has 
emerged as a promising metal for future interconnect technology. 
Numerous Ru complexes with different ligands have been studied to refine 
chemical vapor deposition (CVD) and atomic layer deposition (ALD) 
processes and improve film structure, property and performance. These 
include molecules such as, bis(cyclopentadienyl)ruthenium 
[RuCp2],tris(2,2,6,6-tetramethyl-3,5-heptanedionato)- ruthenium [Ru(thd)3] 
and η4-2,3-dimethylbutadiene ruthenium tricarbonyl [Ru(DMBD)(CO)3].1-3 

Here we investigate the ALD process characteristics of Ru thin films from 
(η4-diene)Ru(CO)3 complexes and resulting film properties. Three molecules 
are chosen i) η4-isopreneruthenium tricarbonyl, ii) (η4-1,3-
butadiene)ruthenium tricarbonyl and iii) (η4-1,3-cyclohexadiene)ruthenium 
tricarbonyl; with the rationale of studying the effect of changes to the 
ligand motif on the film growth characteristics and resulting properties. 
Furthermore, by employing simultaneous in situ spectroscopic ellipsometry 
(SE) and quadrupole mass spectrometry (QMS), we disambiguate the 
physical growth mechanisms and chemical reactions occurring at the 
substrate surface. The resulting Ru film properties are analyzed ex situ using 
x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD) and four-
point probe resistivity measurements. 

Our in situ SE measurements show that, in all cases, deposition occurs for 
temperatures ≥ 160 °C. No self-saturation in growth behavior is observed. 
This aligns with QMS data which suggests that all Ru complexes undergo 
spontaneous dissociation reaction on the substrate surface. The water half-
reaction plays no relevant role in promoting deposition. XPS and XRD 
analyses reveal that all films consist of a Ru/RuOx mixture in line with high 
film resistivity. These results highlight the limited role of ligands in 
controlling the ALD / CVD film growth characteristics of diene-Ru(CO)3 
complexes with H2O as a co-reactant. 

11:00am AP+PS+TF-WeM-13 Study on the Thermal Decomposition 
Behavior of Mo(Co)6 as a Precursor for Mo-ALD, Soken Obara, Souga 
Nagai, Jun Yamaguchi, Noboru Sato, Naoki Tamaoki, Atsuhiro Tsukune, 
Yukihiro Shimogaki, The University of Tokyo, Japan 

As miniaturization advances in state-of-the-art semiconductor devices, 
interconnect resistance becomes increasingly problematic. Atomic layer 
deposition (ALD) of molybdenum (Mo) is gaining attention as a potential 
next-generation interconnect technology to replace conventional Cu and W. 
Although Mo precursors such as MoCl5 and MoO2Cl2 are commonly used, 
they present significant drawbacks, including the need for high processing 
temperatures (~600 °C) and the presence of halogens. In this study, we 
investigated the thermal decomposition and adsorption behavior of 
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Mo(CO)6, a halogen-free precursor capable of deposition at lower 
temperatures, to evaluate its suitability for Mo-ALD. 

Using an ALD system equipped with a bubbling delivery mechanism, we 
deposited Mo films on Si substrates with 100 nm thermal oxide at 
temperatures ranging from 130 to 175 °C, using Mo(CO)6 and NH3 as 
precursor and reactant, respectively. Figure 1 shows the ALD process 
sequence and growth-per-cycle (GPC) as a function of temperature, 
revealing a steep increase in GPC above 150 °C. As shown in Fig. 2, the 
precursor pulse time dependence at 145 °C deviates from the ideal ALD 
self-limiting behavior, indicating a CVD-like growth mechanism. 

To investigate the thermal decomposition characteristics of Mo(CO)6, film 
deposition cycles were performed at 175 °C using only Mo(CO)6 and purge 
gas, without NH3. As shown in Fig. 3, film formation was observed with a 4-
second purge, diminished with an 8-second purge, and disappeared 
completely with a 14-second purge. This suggests that physisorbed species 
were gradually removed by purge, thereby suppressing film formation. To 
determine whether chemisorbed species remained on the surface, a 
subsequent ALD process with NH3 was performed after an 8-second purge. 
As shown in Fig. 4, Mo film growth was observed in the downstream 
region, suggesting that chemisorption persisted even after the longer purge 
duration. 

Step coverage results are shown in Fig. 5. Under ALD conditions at 145 °C 
and 175 °C with a 4-second purge, step coverage was 100% and 91%, 
respectively. However, under the 175 °C condition with an 8-second purge, 
the step coverage exceeded 165%, indicating thicker deposition at the 
bottom. This result is attributed to residual physisorbed species 
accumulating at the feature bottom, leading to enhanced local film growth. 
These findings demonstrate that bottom-up filling can be achieved by 
tuning the purge time of the precursor. 

11:15am AP+PS+TF-WeM-14 Nucleation Enhancement and Growth 
Modification in Co-ALD via Pd activation, Yubin Deng, The University of 
Tokyo, Japan, China; Souga Nagai, Jun Yamaguchi, Yuhei Otaka, Noboru 
Sato, Naoki Tamaoki, Atsuhiro Tsukune, Yukihiro Shimogaki, The University 
of Tokyo, Japan 

With the continued downscaling of ULSI technologies to the 3 nm node, Cu 
interconnects demand increasingly thinner liner/barrier layers that can 
ensure reliable performance under aggressive miniaturization. Previous 
studies have demonstrated that 1-nm-thick Co(W) films exhibit excellent Cu 
diffusion barrier properties [1]. However, the critical challenge remains 
achieving ultrathin, continuous films with precise thickness control. In this 
context, ALD is considered the most promising technique, offering 
conformal and selective growth suitable for high-aspect-ratio structures. 
Importantly, fabricating thinner films via ALD requires higher nucleation 
densities, which can be promoted by Pd activation. The catalytic properties 
of Pd enhance precursor adsorption and subsequent surface reactions, 
thereby improving nucleation. In this study, we systematically investigated 
the impact of Pd activation on the nucleation behavior and morphological 
evolution of ALD-Co films. 

All samples were prepared on Si substrates with a 300-nm-thick thermally 
grown SiO2 layer and were cleaned using ethanol and APM. Two Pd 
activation methods were employed. The conventional wet method involved 
immersion in a colloidal Sn/Pd solution (0.6 mM PdCl2, 30 mM SnCl2, 0.35 
M HCl) at 40 °C for 5 min (Fig. 1), followed by a 3 min rinse in 1 M HCl to 
remove residual Pd and byproducts, and subsequent drying. Alternatively, 
Pd activation was performed using ALD (Fig. 2) at 200 °C for 400 cycles, 
employing palladium(II) hexafluoroacetylacetonate (Pd(hfac)2) as the 
precursor and aqueous formalin (HCHO) as the reducing agent, with N2 as 
the carrier and purge gas. Following Pd activation, Co films were deposited 
via ALD at 150 °C for 500 cycles (Fig. 3), using dicobalt hexacarbonyl tert-
butylacetylene (CCTBA) and H2 as the precursor and reactant, respectively. 

In the wet method, Pd loading was controlled by varying solution 
concentration and activation time. While in Pd-ALD, it was precisely 
adjusted by tuning the precursor pulse count per cycle (supply time). As 
shown in Fig. 4(a), the wet method failed to deposit sufficient Pd on 
thermal SiO2, even with extended activation (50 min) and highly 
concentrated solutions (20×). In contrast, Pd-ALD enabled fine control over 
the Pd amount, as shown in Fig. 4(b). Figure 5 presents the effects of Pd 
loading on Co nucleation and morphology. Increased Pd loading resulted in 
smaller and denser Co nuclei (~9 nm, ~1.1 × 1012 cm-2) and enhanced Co 
deposition. To achieve uniform 1 nm-thick Co films, further optimization of 
the Pd-ALD process is necessary to reach the target nucleation density 
(~1014 cm-2). 

References 

[1] Y. Deng, et al., International Interconnect Technology Conference (IITC), 
3.2, San Jose, CA, June 2024. 

11:30am AP+PS+TF-WeM-15 Process-Structure-Properties of Atomic Layer 
Deposited Niobium Nitride and Evolution of Strain with Plasma 
Chemistry, Neeraj Nepal, Joseph Prestigiacomo, Maria G Sales, Peter M 
Litwin, Vikrant J Gokhale, Virginia D Wheeler, Naval Research Laboratory 

Niobium nitride (NbN) has exceptional physical, chemical, and electrical 
properties that can be utilized in a range of applications such as gate metal, 
superconducting qubits and detectors (Tc ~9-17 K [1]), RF antennas, 
resonators, and Cu interconnect diffusion barriers. For all these 
applications, a low temperature growth process with wafer scale 
uniformity, conformality, and subatomic thickness control is highly 
desirable. Atomic layer deposition (ALD) provides a path towards 
integration of NbN at lower temperatures with control over the desired 
properties. Most reported thin plasma-enhanced ALD (PEALD) NbN films [2-
3] to date are either amorphous or polycrystalline. In this talk, we report on 
highly oriented single phase, PEALD NbN (111) films and discuss the 
evolution of strain with plasma chemistry. 

ALD NbN films were deposited on resistive Si and c-sapphire in a Veeco Fiji 
Gen2 ALD reactor using (t-butylimido)tris(diethylamido)niobium(V) 
(TBTDEN) and N2/H2 plasma precursors. Similar to previous reports [2], 
TBTDEN required a boost to enable growth. Growth windows and film 
morphological, structural, and electrical properties were optimized for 
TBTDEN temperature (80-100°C), TBTDEN boost (1-2s), TBTDEN pulse (1.5-
2.0s), plasma pulse (20-30s), H2/N2 ratio (1.5-12.5), and temperature (150-
400 °C). Optimum growth parameters (TBTDEN = 100°C, TBTDEN boost = 
1.5s, TBTDEN pulse = 2s, and H2/N2 = 60/20sccm) yielded an ALD window 
from 250-300°C with a growth rate (GR) of ~ 0.5A/cy. While GR was almost 
constant for N2 ≥ 20 sccm, room temperature resistivity (ρRT) increased 
linearly with N2 flow. High-resolution XRD scans show 1st and 2nd order (111) 
NbN peaks. Lattice constants obtained from XRD show that strain changes 
from compressive to tensile with increasing N2 flow, in which an N2 flow of 
20 sccm provided an almost strain-free film. The compressively strained 
12.6 nm thick film at 5 sccm N2 resulted in lower ρRT (~139µΩcm) and 
superconducting critical temperature (Tc~12.26K). Measured Tc is similar or 
higher than reported Tc (12.10K) of 15nm thick ALD NbN films [3]. For an 
optimized 30nm thick film, carbon is below the XPS detection limit, RMS 
surface roughness is 0.52nm, and rocking curve FWHM is 0.69°, which is 
narrower than previously reported for 30 nm thick films [3]. Tc on all those 
films were also measured to establish process-structure-property 
relationships, and results will be discussed in the context of use in quantum 
and high temperature contact applications. 

References 

1. Kalal et al., J. of Alloys Compd. 851, 155925 (2021). 
2. Sowa et al., J. Vac. Sci. Technol. A 35, 01B143 (2017). 
3. Lennon et al., Mater. Quantum Technol. 3, 045401 (2023). 

11:45am AP+PS+TF-WeM-16 Thin Film Property Modification via Electric 
Field-Modulated Atomic Layer Deposition, Jessica Jones, Shi Li, Francisco 
Lagunas Vargas, Zachary Hood, Argonne National Laboratory 

Thin, conformal film growth via atomic layer deposition (ALD) is broadly 
used in microelectronics, photovoltaics, and other industries. Enhanced 
thin film properties are required to advance device performance.Electric 
fields affect gas phase molecules, and adsorption behavior, but have not 
been extensively investigated for direction of thin properties.Static electric 
fields are generated and maintained in situ inside an ALD reactor resulting 
in modification of crystallinity and chemical composition. Thicknesses were 
determined via spectroscopic ellipsometry, uniformity was investigated by 
atomic force microscopy, crystallinity by x-ray diffraction and (scanning) 
transmission electron microscopy (S)TEM, and chemical composition by x-
ray photoelectron spectroscopy. These systems are computationally 
investigated to probe the mechanism by which the ALD processes are 
enhanced. 

Acknowledgements: This material is based upon work supported by 
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the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. 
Work performed at the Center for Nanoscale Materials, a U.S. Department 
of Energy Office of Science User Facility, was supported by the U.S. DOE, 
Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. 
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12:00pm AP+PS+TF-WeM-17 Thin Conductive Cu Films by In-Situ Plasma 
Post-Reduction of Atomic Layer Deposited CuO, Maria Sales, Neeraj Nepal, 
Peter Litwin, David Boris, Scott Walton, Virginia Wheeler, Naval Research 
Laboratory 

Interconnect applications in microelectronics has helped spur the need to 
develop robust and scalable atomic layer deposition (ALD) processes for 
copper (Cu). For this application space, the unique advantage of ALD is 
being able to conformally coat via structures with high aspect ratios due to 
the self-saturating nature and precise thickness control. Reported ALD 
recipes for pure Cu typically rely on reactions between a metal-organic Cu 
precursor and either a thermal or plasma reducing reactant. However, 
these conventional ALD Cu processes have very low growth rates. Like other 
metal ALD recipes, ALD Cu typically requires thicknesses of at least 20-40 
nm to achieve a fully coalesced, conductive film. Thus, limiting these 
process in applications where ultrathin highly conductive layers are 
required. 

In this work, we report on an alternative way to obtain conductive Cu thin 
films by combining CuO with a higher growth rate and faster coalescence 
with an in-situ plasma reduction. Initially, copper (II) oxide, or CuO, is 
deposited by PEALD at a substrate temperature of 150 °C, using copper(I)-
N,N’-di-sec-butylacetamidinate ([Cu(sBu-amd)]2) and Ar/O2 plasma as 
precursors. The growth rate for this CuO recipe is 0.3 Å/cycle, which is 
higher than what is obtained for pure Cu using the same precursor (0.1 
Å/cycle). Grown CuO films have a low concentration of incorporated ligands 
and a smooth surface morphology. Following a fixed number of CuO ALD 
cycles, the CuO film is then exposed to in-situ reducing Ar/H2 plasma pulses. 
To characterize the resulting films, spectroscopic ellipsometry (SE), X-ray 
photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and 
contactless sheet resistance measurements were performed. 

Various parameters during the Ar/H2 reducing plasma, such as total 
exposure time, pulse lengths, and number of reducing plasma cycles, were 
investigated and effect on key properties of the resultant Cu film, such as 
chemistry, morphology, and resistivity will be discussed. Additionally, we 
report on utilizing supercycles of CuO ALD and reducing plasma pulses to 
grow thicker (30 nm) Cu films with low resistivity. To date, our most optimal 
CuO-then-post-reduction procedure yielded a 30 nm Cu film with a root 
mean square (RMS) roughness of 3.3-3.5 nm and a resistivity of 3.8 µΩ cm, 
which is only a factor of 2 greater than for bulk Cu. 
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