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8:00am EM1+AP+CPS+MS+PS+QS+SM+TF-TuM-1 Optical Integration for 
Trapped-Ion Systems, Daniel Stick, Sandia National Laboratories INVITED 

First demonstrated in 2006, surface ion traps provide a platform for storing 
2D arrays of ions and have been widely adopted across the trapped-ion 
quantum computing community. To take advantage of the scalability 
enabled by these devices, on-chip waveguides have been developed over 
the last decade to replace traditional bulk-optics that can only illuminate a 
single line of ions. Here I will describe integrated photonics experiments 
that bring together multiple elements to control larger arrays of ions, as 
well as new approaches to addressing the I/O challenge of bringing the 
many optical signals across the ultra-high vacuum boundary. These 
advances are necessary for supporting the large number of ions needed for 
trapped-ion quantum computing, as well as for making deployable optical 
clocks. 

8:30am EM1+AP+CPS+MS+PS+QS+SM+TF-TuM-3 Rapid, Atomic-Scale 
Smoothing of GaSb(111)A Surfaces During Molecular Beam Epitaxy, James 
Rushing, Paul Simmonds, Tufts University 

InAs/Ga(In)Sb quantum wells (QWs) with a broken gap band alignment can 
behave as a quantum spin hall insulator (QSHI) with an insulating bulk and 
topologically protected helical edge states [1-2]. QSHIs could be a key 
component in spintronic and topological quantum computing applications 
[2-3]. Producing a topological phase transition in InAs/Ga(In)Sb QWs 
requires precise control of QW thickness, composition and quality, 
particularly at the heterointerfaces. Additionally, our calculations suggest 
QWs grown on (111) surfaces could provide benefits over (001) due to the 
higher symmetry and out-of-plane polarization effects of this surface. 

While exploring the MBE growth of InAs/Ga(In)Sb QW heterostructures on 
GaSb(111)A, we discovered an exciting and confounding phenomenon that 
seems to be unique to crystal growth on III-Sb(111)A surfaces. 
Ga(In)Sb(111)A frequently exhibits an extremely rough morphology 
characterized by pyramidal peaks covering the entire surface. We show that 
rough III-Sb surfaces (pyramidal features >70nm in height; rms roughness 
>10nm), can be smoothed to atomically flat surfaces (<3nm height features; 
<0.5nm rms roughness) in a matter of seconds by exposing them to an 
arsenic over-pressure. We first observed this phenomenon when rough 
GaInSb(111)A surfaces became atomically flat after capping with just 8nm 
of InAs. After reducing the thickness of this InAs layer to a single monolayer 
and still observing he same surface smoothing effect, we found that we 
could achieve almost identical results by simply exposing the rough 
GaSb(111)A to an arsenic flux. These results suggest that arsenic is the 
primary mover in these profound morphological changes. Our recent 
results show that the smoothing can be accomplished with As4 or As2, and 
with a wide range of arsenic beam equivalent pressures, from 5x10-7 to 
1x10-5 Torr. 

We will describe our efforts to gain control and understanding of this 
phenomenon through the modulation of arsenic exposure time, flux, and 
terminating III-Sb material. This powerful new MBE technique will allow us 
to reliably achieve smooth heterointerfaces in (111)-oriented InAs/Ga(In)Sb 
QWs for novel, high-quality QSHIs. More broadly, we believe that this 
approach will enable the growth of a wide array of III-Sb-based 
nanostructures on (111)A surfaces for other electronic and photonic 
applications. 

1. Krishtopenko and Teppe. Science Advances 4, eaap7529 (2018) 
2. Avogadri et al. Physical Review Research 4, L042042 (2022)  
3. Du et al. Physical Review Letters 119, 056803 (2017) 

8:45am EM1+AP+CPS+MS+PS+QS+SM+TF-TuM-4 Benchmarking different 
NbTiN sputtering methods for 300 mm CMOS-compatible 
superconducting digital circuits, Adham Elshaer, Jean-Philippe Soulié, 
Daniel Perez Lozano, Gilles Delie, Ankit Pokhrel, Benjamin Huet, IMEC 
Belgium; Margriet J. Van Bael, KU Leuven and Imec, Belgium; Daan 
Buseyne, KU Leuven, Belgium; Blake Hodges, Seifallah Ibrahim, Sabine 
O'Neal, Imec USA; Zsolt Tökei, Imec Belgium; Anna Herr, Quentin Herr, Imec 
USA 

The NbTiN films presented here are CMOS-compatible and were developed 
for metallization purposes in superconducting digital circuits [1-5]. Those 
circuits use NbTiN for Josephson junctions and capacitors electrodes, as 
well as for wiring. Superconducting digital circuits initially relied on Nb in 
the early days. NbTiN is a better candidate/replacement due to its higher 
thermal budget and better chemical stability [1-5]. In this study, the 
properties of superconducting NbTiN thin films deposited using two 
different sputtering methods have been compared. One method used 
multiple targets (MT) co-sputtering (Nb and Ti targets), while the other 
used a NbTi single target (ST). Benchmarking metrics used for comparison 
include: superconducting, electrical, as well as morphological properties. All 
films show a high Tc, ranging from 13.3 K to 15.1 K. Compared to MT, ST 
NbTiN films showed consistently lower resistivity and better sheet 
resistance (Rs) wafer-level uniformity (49 points wafer-map). For instance, 
50 nm MT film had a Rs relative standard deviation (Stddev%) of 15.5%, 
while for the ST NbTiN films, Rs Stddev% showed a 2-fold improvement at 
7.8%. Upon annealing of the ST NbTiN films at 650℃, the Rs uniformity 
further improved, reflected by a lower Stddev% at 4.5%. AFM data show 
similar results for MT and ST films, ~1.07 nm and 1.09 in the center and 
0.73 nm and 0.71 nm at the edge of the wafers, respectively. Furthermore, 
XRD theta-2theta scans have been performed showing the 200 and 111 
peaks for NbTiN orientations. Results show that the MT and ST films have 
different/signature 200/111 peak intensity ratios for the as deposited films. 
ST NbTiN films have a lower 200/111 peak ratio. However, after annealing 
at 650℃, the ST films 200/111 peak ratio increases, and surpasses that of 
the MT NbTiN films. This change suggests a change in the ST film disorder 
and grain size after annealing. The impact of the ST NbTiN film thickness on 
properties has also been studied. The Tc shows an increase as a function of 
thickness, from 9.6 K for 7 nm, to 14.3 K for 50 nm, up to 14.9 K for 200 nm 
films. Certainly, the ability to tune the superconducting properties of 
NbTiN, makes them appealing from a stack engineering perspective. Both 
MT and ST NbTiN properties can be tailored using deposition conditions 
such as: power, partial pressure and post deposition annealing [3]. 
However, MT NbTiN films 300 mm wafer-level Rs non-uniformity represents 
a limiting factor for scaling superconducting devices. Annealed NbTiN ST 
films on the other hand, show a 3.4-fold Rs wafer uniformity improvement 
while maintaining properties tunability. 

9:00am EM1+AP+CPS+MS+PS+QS+SM+TF-TuM-5 Controlling the 
Properties of Epitaxially Grown Topological Semimetals, Kirstin Alberi, 
National Renewable Energy Laboratory INVITED 

Three dimensional topological semimetals (TSMs) exhibit a wide range of 
interesting properties, including high carrier mobility, large 
magnetoresistance, anomalous transport behavior, broadband optical 
absorption and non-linear optical responses. Epitaxial thin film synthesis 
offers a practical platform for manipulating composition, defects and 
disorder in these materials, offering a window into approaches for 
manipulating their properties. In this talk, I will discuss insights into the 
relationships between structure and composition and the resulting 
properties revealed through careful control of growth conditions. Focused 
examples include the impact of point defects and impurities on electron 
transport in the Dirac TSM Cd3As2 and the formation and behavior of 
domain boundaries in the Weyl TSM TaAs. 

This work was authored by the National Renewable Energy Laboratory, 
operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of 
Energy (DOE) under Contract No. DE-AC36-08GO28308. Research was 
performed under the Disorder in Topological Semimetals project funded by 
the U.S. Department of Energy Office of Science, Basic Energy Sciences, 
Physical Behavior of Materials program. The views expressed in the article 
do not necessarily represent the views of the DOE or the U.S. Government. 
The U.S. Government retains and the publisher, by accepting the article for 
publication, acknowledges that the U.S. Government retains a nonexclusive, 
paid-up, irrevocable, worldwide license to publish or reproduce the 
published form of this work, or allow others to do so, for U.S. Government 
purposes. 
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9:30am EM1+AP+CPS+MS+PS+QS+SM+TF-TuM-7 Photon Down-
Conversion of Yb-Doped CsPb(Cl1-xBrx)3 to Low-bandgap Metal Halide 
Perovskites, Yutong Ren, Princeton University; Igal Levine, The Hebrew 
University of Jerusalem, Israel; Dan Oron, David Cahen, Weizmann Institute 
of Science, Israel; Antoine Kahn, Princeton University 

Quantum cutting represents a transformative strategy to mitigate 
thermalization losses that typically occur when high-energy photons are 
absorbed by semiconductors.1,2 Recent advances have extended this 
concept from rare-earth doped crystals to semiconductor–rare-earth hybrid 
systems, particularly those utilizing halide perovskite absorbers, thereby 
exploiting their exceptional optoelectronic properties. 

In this study, we focus on Ytterbium (Yb) -doped CsPb(Cl1-xBrx)3, a metal 
halide perovskite that absorbs visible light and exhibits intense near-
infrared (NIR) photoluminescence—a clear signature of efficient quantum 
cutting. Upon excitation with visible light, the doped perovskite converts 
the absorbed energy into two NIR photons, with the emission energy 
closely matching the optimized bandgap of a Sn–Pb based perovskite 
absorber. This spectral alignment is critical for enabling effective energy 
transfer between the quantum cutting layer and the absorber. 

Our investigation focuses on elucidating the structural and electronic 
properties of the interfaces between Yb-doped CsPb(Cl1-xBrx)3 and Sn–Pb 
based perovskite films. By employing a suite of advanced spectroscopic 
techniques—including ultraviolet photoelectron spectroscopy, inverse 
photoemission spectroscopy, time-resolved photoluminescence (tr-PL), and 
time-resolved surface photovoltage (tr-SPV)—we systematically examine 
how the quantum cutting layer, the absorber layer, and their interfacial 
region collectively influence energy transfer efficiency. In particular, the 
complementary tr-PL and tr-SPV analyses unambiguously determine the 
dominant interfacial charge transfer and recombination processes, and thus 
gain control over the interfacial charge transfer. By integrating Yb-doped 
CsPb(Cl₁₋ₓBrₓ)3 with customized Sn–Pb perovskite absorbers, our approach 
shows promise for pushing the boundaries of conventional efficiency limits 
while also offering a cost-effective strategy for enhanced energy 
conversion. 

1. Wegh, R. T. et al. Quantum cutting through downconversion in rare-earth 
compounds. J. Lumin. 87–89, 1017–1019 (2000). 

2. Kroupa, D. M. et al. Quantum-cutting ytterbium-doped CsPb(Cl1–xBrx)3 
perovskite thin films with photoluminescence quantum yields over 190%. 
ACS Energy Lett. 3, 2390–2395 (2018). 

9:45am EM1+AP+CPS+MS+PS+QS+SM+TF-TuM-8 Implementation of a 
Truly 2D Model to Describe the Weak Antilocalization Behavior of 
Topological Insulators, Ryan Van Haren, Aubrey Hanbicki, Adam Friedman, 
Laboratory for Physical Sciences 

Topological insulators continue to garner interest for potential and 
functionally-prototyped applications in next-gen electronic, spintronic, and 
quantum devices. In many of these applications, the topological surface 
states play a critical role. Transport through the surface states is often 
quantified by fitting to quantum corrections to the conductance that 
appear at low temperature. The model commonly used for these fittings is 
the Hikami-Larkin-Nagaoka (HLN) model, a quasi-2D model that does not 
account for the Dirac nature of the topological surface state. In the years 
following the discovery of topological insulators, theoretical work was 
performed that calculated the quantum corrections while taking into 
account the unique properties of the topologically protected surface 
states1. This Dirac fermion model provides powerful insight into the surface 
state transport by quantifying the Fermi velocity and the phase coherence 
length, among other parameters, but adoption of this model has been slow 
due to it being more complicated to utilize than the HLN model. In this 
work, I will present my method for implementing the Dirac fermion model 
in practice on weak antilocalization data from topological insulator thin 
films of Bi0.85Sb0.15 and previously published topological insulator thin films2. 
I will contrast the Dirac fermion model fits with the HLN model fits and 
show how the derived Fermi velocity agrees well with values derived from 
ARPES measurements reported in literature. I will make the argument that, 
while the HLN model still has its uses, analysis of weak antilocalization 
behavior in topological insulators is incomplete without utilization of the 
Dirac fermion model. 

(1) Adroguer, P.; Liu, W. E.; Culcer, D.; Hankiewicz, E. M. Conductivity 
Corrections for Topological Insulators with Spin-Orbit Impurities: Hikami-
Larkin-Nagaoka Formula Revisited. Phys. Rev. B 2015, 92 (24), 241402. 
https://doi.org/10.1103/PhysRevB.92.241402. 

(2) Van Haren, R.; Lederman, D. Suppressed Weak Antilocalization in 
Topological Insulator--Antiferromagnetic Insulator (BiSb)2Te3-MnF2 Thin Film 
Bilayers. Phys. Rev. B 2024, 110 (20), 205409. 
https://doi.org/10.1103/PhysRevB.110.205409. 
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