Wednesday Afternoon, September 24, 2025

Electronic Materials and Photonics

Room 207 A W - Session EM2+AP+NS+TF-WeA

Advances in Materials and Devices for Energy Storage

Moderators: Claire Davis-Wheeler Chin, Sandia National Lab, Alexander Kozen, University of Vermont

3:15pm EM2+AP+NS+TF-WeA-5 In-Situ Characterisation of Solid Electrolyte Interphase Formation on Lithium Metal for Energy Storage, *Anthony Somers*, Deakin University, Australia

The Solid Electrolyte Interphase (SEI) is a complex passivating layer that forms on the anode in the early stages of battery cycling. Ideally this layer should protect the anode from degradation while allowing the ions of interest to freely move through with high efficiency. To ensure long cycle life this layer also needs to be stable over hundreds of charge/discharge cycles. For the safe and successful operation of promising new battery technologies, such as lithium metal, information on how electrolyte composition effects the SEI is needed.

Most analysis of the SEI is ex-situ, making it difficult to identify the processes occurring during the initial formation phase. While there are a range of in-situ and operando techniques that have been used to investigate SEI formation, there is often a lack of cross-checking between techniques to confirm findings or determine all processes involved.

In this work a range of in-situ, operando and ex-situ techniques have been used to identify the mechanisms of SEI formation in relation to cycling performance for lithium metal batteries with ionic liquid containing electrolytes. To achieve this, techniques able to detect early subtle changes at the electrode, such as electrolyte rearrangement and organic adsorption, as well as the final reactions that lead to the formation of inorganic, passive layers have been used. Measurements such as operando FTIR spectra, insitu differential capacitance and electrochemical quartz crystal microbalance and ex-situ XPS are used to form this more complete picture of the processes involved in SEI formation.

3:30pm EM2+AP+NS+TF-WeA-6 Intercalation of Polyacrylonitrile Nanoparticles in Ti3C2 MXene Layersfor Improved Supercapacitance, Shanna Marie Alonzo, Bishnu Bastakoti, North Carolina A&T State University

We report the intercalation of polyacrylonitrile nanoparticles in $\mathsf{Ti}_3\mathsf{C}_2\mathsf{T}_x$ MXene layers through simple sonication. The use of polyacrylonitrile, which was synthesized via radical polymerization, offered dual benefits: (1) It increased the interlayer spacing of MXene, thereby exposing more surface area and enhancing ion transport channels during charge and discharge cycles, and (2) Integrating MXene with polyacrylonitrile enables the creation of a composite with conductive properties, following percolation principle. X-ray diffraction analysis showed an increase in the c-lattice parameter, indicative of the interlayer spacing, from 22.31 Å for the pristine MXene to 37.73 Å for the MXene-polyacrylonitrile composite. The intercalated polyacrylonitrile nanoparticles facilitated the delamination by weakening the interlayer interactions, especially during sonication. Electrochemical assessments revealed significant improvement in the properties of the MXene-polyacrylonitrile composite compared to the pristine MXene. The assembled asymmetric device achieved a good specific capacitance of 32.1 F/g, an energy density of 11.42 Wh/kg, and 82.2% capacitance retention after 10,000 cycles, highlighting the practical potential of the MXene-polyacrylonitrile composite.

ACS Applied Materials & Interfaces **2024** 16 (47), 64784-64796 DOI: 10.1021/acsami.4c14420

Author Index

Bold page numbers indicate presenter

--- A ---Alonzo, Shanna Marie: EM2+AP+NS+TF-WeA-6, 1

Bastakoti, Bishnu: EM2+AP+NS+TF-WeA-6, 1