

## A Comprehensive Investigation of Raman Laser-Induced Structural Modification in CVD-Grown Monolayer MoS<sub>2</sub>

Sieun Jang<sup>a</sup>, Seonha Park<sup>a</sup>, and Songkil Kim<sup>a,†</sup>

<sup>a</sup>School of Mechanical Engineering, Pusan National University, Busan 46241, South Korea <sup>†</sup>Corresponding author. Tel: +82-51-510-1014 | E-mail: songkil.kim@pusan.ac.kr



**Figure S1.** Effect of laser irradiation on monolayer  $MoS_2$ . (a) Raman intensity mapping image at A' vibration mode. (b) Raman intensity mapping image at the hydrogenated amorphous carbon (a:C-H) peak. The scale bars represent 1  $\mu$ m. (c) AFM topography image of (a) and (b) with part of the laser spot scratched. (d) Schematic illustration depicting the effects on monolayer  $MoS_2$  relative to the spatial distribution of the laser intensity and its interaction with the sample.



**Figure S2.** Raman spectra of E' and A' vibration modes in the range of  $375 \sim 420 \text{ cm}^{-1}$  according to the power and exposure time. The spectra are normalized to the A' vibration mode. The A' vibration mode exhibits a slight blue-shift ( $\sim 407 \text{ cm}^{-1}$ ) at a laser power of 40 mW.

**Table S1.** Calculated maximum temperature of the top surface of the Si substrate according to the laser power.

|                           |            | 10.37 mW             | 20.14 mW             | 40.48 mW             | 51.82 mW             |
|---------------------------|------------|----------------------|----------------------|----------------------|----------------------|
| D                         | (µm)       | 0.74                 | 0.74                 | 0.74                 | 0.74                 |
| q"laser, average          | $(W/cm^2)$ | $2.41 \times 10^{6}$ | $4.68 \times 10^{6}$ | 9.41x10 <sup>6</sup> | 1.29x10 <sup>7</sup> |
| T <sub>Si, top, max</sub> | (K)        | 373.19               | 443.89               | 591.08               | 673.15               |
|                           | (°C)       | 100.04               | 170.74               | 317.93               | 400.00               |