## Supporting figures.



FIG 1. In situ XPS of Ni/Al<sub>2</sub>O<sub>3</sub>/ $\beta$ -Ga<sub>2</sub>O<sub>3</sub> stack. (a) Al 2s and (b) Ni 2p and (c) C 1s core level, of initial (as-loaded), after ~ 2nm Al<sub>2</sub>O<sub>3</sub> deposition and after ~ 1nm Ni deposition, showing interface reactions caused by Ni gate. (Al 2s is used for fitting due to an overlap between Ni 3p and Al 2p regions.)



FIG 2. In situ XPS of Ti/Al<sub>2</sub>O<sub>3</sub>/ $\beta$ -Ga<sub>2</sub>O<sub>3</sub> stack. (a) Al 2p and (b) Ti 2p and (c) C 1s core level spectra, of initial, after ~ 2nm Al<sub>2</sub>O<sub>3</sub> deposition and after ~ 1nm Ti deposition, showing interface reactions caused by Ti gate.



FIG 3. Normalized gate leakage for  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>-based MOSCAPs with ~12 nm of Al<sub>2</sub>O<sub>3</sub> and Ti/Au or Ni/Au gate, where a lower leakage in the accumulation region of Ni gate devices is compatible with a more robust dielectric layer.