Surface Electronic Structure Comparison of Fe-Intercalated and 2H-TaS₂

Dejia Kong¹, Sree Sourav Das², Jacob St. Martin³, Peter Siegfried^{4,5}, Zhiqiang Mao^{6,7}, Seng Huat Lee^{6,7}, Ian Harrison¹, Nirmal Ghimire^{8,9}, Mona Zebarjadi², Zheng Gai^{10*} and Petra Reinke^{3*}

¹ Department of Chemistry, University of Virginia, Charlottesville, VA, 22903, USA

² Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22903, USA

³ Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22903, USA

⁴ Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030, USA

⁵ Quantum Science and Engineering Center, George Mason University, Fairfax, VA 22030, USA

⁶ 2D Crystal Consortium, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

⁷ Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

⁸ Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA

⁹ Stravropoulos Center for Complex Quantum Matter, University of Notre Dame, Notre Dame, IN 46556, USA

¹⁰ Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA

Anisotropic ferromagnetic phases can be introduced to transitional metal dichalcogenide (TMD) TaS₂ through intercalating Fe in the van der Waals (vdW) gap. By deviating from the commensurate values (x = ¼ or ⅓), the crystalline structure as well as the magnetotransport properties of the TMD system can be tuned. For instance, Fe_{1/4}TaS₂ has a centrosymmetric 2×2 structure while Fe_{1/3}TaS₂ has a non-centrosymmetric $\sqrt{3} \times \sqrt{3} R30^\circ$ supercell structure. The magnetic Curie temperature of Fe_xTaS₂ also exhibits a strong dependence on Fe concentration. We evaluate Fe_{0.28}TaS₂ and 2H-TaS₂ samples using STM/Spectroscopy (STM/S) and density functional theory (DFT) to investigate the real-space intercalant electronic structure comparatively and the potential phase segregation between the two commensurate compounds. Fe_{0.28}TaS₂ shows a $\sqrt{3} \times \sqrt{3} R30^\circ$ supercell at 77 K, whereas 2H-TaS₂ displays no apparent supercell at the same temperature. Fe vacancy defects and clusters are discovered in the intercalated surface, and their surrounding local density of states (LDOS) shows non-trivial differences at energies compared to the pristine Fe_{0.28}TaS₂ area, which is related to Fe orbitals contributions based on the DFT calculations.

The STM work of this research was conducted at the Center for Nanophase Materials Sciences, ORNL, which is a DOE Office of Science User Facility.