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1:20pm TS4-ThA-1 New 3D and 2D Metal Borides from Materials 
Synthesis Guided by High-Throughput Simulations, Johanna Rosen 
(johanna.rosen@liu.se), Linkoping University, Sweden INVITED 

Exploratory theoretical predictions in uncharted structural and 
compositional space are integral to materials discoveries. A more recent 
addition to the family of laminated metal borides, so called MAB phases, is 
new types of chemically ordered quaternary borides, i-MAB 
(M´4/3M´´2/3AlB2) and o-MAB (M´4M´´SiB2), in which the M-atoms are in-
plane and out-of-plane chemically ordered, respectively. Both types of 
phases have been identified in high-throughput simulations followed by 
experimental synthesis, and they can be chemically exfoliated into 2D 
sheets, and selectively prepared in multilayer form, as delaminated single-
layer sheets in colloidal suspension, or as additive-free filtered films. For 
example, Ti4MoSiB2o-MAB can be used to derive 2D TiOxCly of high yield. 
(Mo2/3Y1/3)2AlB2 and (Mo2/3Sc1/3)2AlB2 i-MAB can be used for realization of so 
called boridene in the form of single-layer 2D sheets with ordered metal 
vacancies, Mo4/3B2-xTz(Tz = -F, -O, -OH). The present talk will summarize the 
results to date of our predictive theoretical approach that have led to 2D 
materials synthesis from 3D quaternary metal borides, the mechanisms 
behind the realization of these 3D/2D materials, and evaluation of selected 
properties. 

2:00pm TS4-ThA-3 Machine Learned Moment Tensor Potentials for Hard 
Coatings, Ferenc Tasnádi (ferenc.tasnadi@liu.se), F. Bock, M. Odén, I. 
Abrikosov, IFM Linköping University, Sweden 

Refractory nitrides (TiN, Hf N , NbN etc.) nitride alloys (Ti1-x AlxN, etc.) or 
high-entropy alloys, such as TiZrHfTa are materials with high industrial 
relevance for hard coatings o f cutting tools [1] even for superconducting 
and plasmonic-based devices. M ajor objectives for their performance are 
the high-temperature the rmodynamic, dynamic and elastic properties. A 
recently developed combination of quantum mechanical calculations with 
machine-learning interatomic potentials (MLIP) [2], is utilized to calculate 
high temperature properties with high accuracy. On-the-fly training of 
moment tensor potentials allows us to perform the calculations with more 
than two orders less computational effort than using state-of-the-art ab 
initio molecular dynamics simulations. The calculated elastic constants are 
used to simulate surface acoustic waves and Brillouin light scattering (BLS) 
spectra. The results are compared with experiments. Furthermore, we 
investigate high-temperature bcc phase of titanium and predict very weak 
temperature dependence of its elastic moduli [3], called Elinvar effect, 
similar to the behavior observed for the so-called GUM metals . The effect 
in bcc-Ti is intrinsic and therefore unique. 

[1] See, for example, F. Tasnádi et al., Phys. Rev. B 85, 144112 (2012); F. 
Tasnádi et al., Appl. Phys. Lett. 97, 231902 (2010); D. Holec et al. Phys. Rev. 
B 90, 184106 (2014); F. Tasnádi et al., Mater. Des. 114, 484 (2017); H. 
Huang et al., Adv. Mater. 5, 1701678 (2017). [2] I. S. Novikov et al., Mach. 
Learn.: Sci. Technol. 2 025002 (2021). [3] A. Shapeev et al., New. J. Phys. 22, 
113005 (2020). 

2:20pm TS4-ThA-4 High-Throughput Rapid Experimental Alloy 
Development (HT-READ), Kenneth Vecchio (kvecchio@eng.ucsd.edu), UC 
San Diego, Dept. of NanoEngineering, USA INVITED 

The development of high-throughput materials development strategies in 
the thin-film field have moved forward more quickly than bulk material 
high throughput strategies, primarily due to the need in bulk materials to 
account for microstructure effects on properties.In addition, the current 
bulk materials discovery cycle has several inefficiencies from initial 
computational predictions through fabrication and analyses. Much of the 
information and knowledge generated existed in isolated data silos making 
integrated approaches more challenging. This was the motivation for the 
2011 Materials Genome Initiative, which sparked advances in many high-
throughput computational techniques related to materials development. 
However, computational techniques ultimately rely on experimental 
validation.However, bulk materials are generally evaluated in a singular 
fashion, relying largely on human-driven compositional choices and 
analysis of the volumes of generated data, thus also slowing validation of 

computational models. Thus, increasing the rate of materials 
experimentation is fundamental to improving materials research, and 
requires parallelizing, automating, and miniaturizing key steps in 
experimental materials research, including computation, synthesis, 
processing, characterization, and data analysis.To overcome these 
limitations, we developed a High-Throughput Rapid Experimental Alloy 
Development (HT-READ) platform and methodology that comprises an 
integrated, closed-loop material screening process inspired by broad 
chemical assays and modern innovations in automation. Our method is a 
general framework unifying computational identification of ideal candidate 
materials, fabrication of sample libraries in a configuration amenable to 
multiple tests and processing routes, and analysis of the candidate 
materials in a high-throughput fashion. An artificial intelligence agent is 
used to find connections between compositions and material 
properties.New experimental data can be leveraged in subsequent 
iterations or new design objectives. The sample libraries are assigned 
unique identifiers and stored to make data and samples persistent, thus 
preventing institutional knowledge loss.This integrated approach paves the 
way for compositionally accurate and microstructurally informed bulk 
materials development in a highly-accelerated manner. 

3:00pm TS4-ThA-6 Finding Thermally Robust Superhard Materials with 
Machine Learning, Jakoah Brgoch (jbrgoch@Central.UH.EDU), University 
of Houston, USA INVITED 

Superhard materials with a Vickers hardness >40 GPa are essential in 
applications ranging from manufacturing to energy production. Finding 
new superhard materials has traditionally been guided by empirical design 
rules derived from classically known materials. However, the ability to 
quantitatively predict hardness remains a significant barrier in materials 
design. To address this challenge, we constructed an ensemble machine-
learning model capable of directly predicting load-dependent hardness. 
The predictive power of our model was validated on eight unmeasured 
metal disilicides and a hold-out set of superhard materials. The trained 
model was then used to screen compounds in Pearson’s Crystal Data (PCD) 
set and combined with our recently developed machine-learning phase 
diagram tool to suggest previously unreported superhard compounds. 
Finally, industrial materials often experience tremendous heat during 
application; thus, we are building a method for predicting hardness at 
elevated temperatures. 

3:40pm TS4-ThA-8 Rational Composition Optimization: Coupling Mixture 
Designs, Combinatorial Methods and Machine Learning, Elise GAREL 
(elise.garel@grenoble-inp.fr), H. VAN LANDEGHEM, J. PAROUTY, M. 
VERDIER, S. COINDEAU, R. MARTIN, F. ROBAUT, R. BOICHOT, SIMAP, 
Grenoble-INP, CNRS, France 

Multinary optimization has been at the heart of recent developments, 
either for High Entropy Alloy or for metallic glasses, amongst others. It 
represents a challenge that requires overcoming the usual method of “one 
sample at a time”. Combinatorial approaches have been applied many 
times to N-element systems, and this study proposes to couple it to 
mixture design, in order to guarantee a uniform and systematic screening 
of the composition space, by elaborating and characterizing magnetron 
sputtered films with controlled gradients of composition. 

 
 
 

This method was applied to the refractory high entropy alloy system Nb-Ti-
Zr-Cr-Mo, on as-grown and annealed samples, as well as on a nitride 
pseudo-ternary, Ti-Al-Nb-N. The mechanical properties were measured by 
nanoindentation for both, while crystallinity was assessed using XRD — and 
EBSD in the case of the HEA. Conductivity measurements were performed 
on the nitride system. This high-throughput screening resulted in an 
experimental database covering the properties of 460 HEA compositions 
and 140 nitride compositions that was used to train Machine Learning 
models linking compositions, structures and properties. 

 
 
 

In order to explore the possibilities offered by Machine Learning, several 
databases and different models were used. Raw experimental data and 
statistically processed database allowed delineating the performances of 
Machine Learning. Models with increasing complexity were tested: 
multilinear regression with interactions, Support Vector Machine, Random 
Forest and Neural Network, with previously adjust hyper-parameters. 
Random Forest and Neural Network show a very good accuracy, either on 
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regression or on classification, for property prediction over the entire 
composition space. Multilinear regression, performing adequately as well, 
allows a rapid understanding of the weights of each component on the 
properties, as well as their interactions, which can be used to rationally 
examine the largely discussed hypothesis of the cocktail effect. For 
instance, the elastic modulus of as-grown RHEA system is well fitted by 
multilinear regression and coefficients show that it almost only results from 
a linear combination of the effect of pure elements. Hardness presents on 
the contrary much more complexity, with a high positive effect of binaries 
and principally a negative effect of ternaries and quaternaries, leading to 
higher values at the edges of the composition space than at its center. 

 
 

Based on Machine Learning predictions, isovalue hulls and Pareto-optimal 
domains can be determined inside the composition space and used to 
identify the composition sets that show the best property compromises. 

4:00pm TS4-ThA-9 Transfer Learning of Thermodynamic and Elstic 
Properties of Hard-Coating Alloys, Henrik Levämäki 
(henrik.levamaki@liu.se), F. Tasnadi, D. Sangiovanni, Linköping University, 
IFM, Sweden; L. Johnson, Sandvik Coromant, Sweden; R. Armiento, I. 
Abrikosov, Linköping University, IFM, Sweden 

Accelerated design of novel hard-coating materials requires state-of-the-
art computational tools, which include data-driven techniques, building 
databases, and training machine learning (ML) models against the 
databases. 
We present a development of a heavily automated high-throughput 
workflow to build a database of industrially relevant hard coating alloys, 
such as disordered binary and ternary nitrides [1]. 
We use Vienna Ab initio Simulation package (VASP) as the density 
functional theory calculator and the high-throughput toolkit (httk) to 
automate the calculation workflow. 
One of the key quantities in the computational study of hardness is the 
elastic tensor, and the challenge we face is that calculating the elastic 
tensor for disordered supercells is resource intensive, which makes building 
a large database of disordered hard-coating alloys slow. 
We therefore explore ways for ML techniques to support and complement 
our databases. 
We find that the crystal graph convolutional neural network (CGCNN) 
model [2] trained on ordered compounds from the Materials Project [3] 
has sufficient prediction accuracy for the disordered nitrides. 
This suggests that the existing public or commercial databases provide 
important data for predicting mechanical properties of qualitatively 
different types of material systems, which in our case are disordered hard-
coating alloys that are not included in the original dataset. 
 
[1] Can be found in arXiv under the title: "Predicting properties of hard-
coating alloys using ab-initio and machine learning methods" 
 
[2] Xie, Tian and Grossman, Jeffrey C., "Crystal Graph Convolutional Neural 
Networks for an Accurate and Interpretable Prediction of Material 
Properties", Physical Review Letters 120, 145301 (2018), doi: 
10.1103/PhysRevLett.120.145301 
 
[3] Jain, Anubhav and Ong, Shyue Ping and Hautier, Geoffroy and Chen, 
Wei and Richards, William Davidson and Dacek, Stephen and Cholia, 
Shreyas and Gunter, Dan and Skinner, David and Ceder, Gerbrand and 
Persson, Kristin A., "Commentary: The Materials Project: A Materials 
Genome Approach to Accelerating Materials Innovation", APL Materials 
011002 (2013), doi: 10.1063/1.4812323 

4:20pm TS4-ThA-10 Data-Driven Search for Thermal Insulators Guided by 
Anharmonicity: From First Principles to Machine Learning, Florian Knoop 
(florian.knoop@liu.se), Linköping University, IFM, Sweden; M. Langer, 
Technical University of Berlin, Germany; C. Carbogno, NOMAD Laboratory 
at the Fritz Haber Institute of the Max Planck Society, Germany; M. Rupp, 
University of Konstanz, Germany; M. Scheffler, NOMAD Laboratory at the 
Fritz Haber Institute of the Max Planck Society, Germany 

We present a systematic first-principles search for thermal insulators in 
materials space which covers hundreds of compounds, five lattice types 
and seven space groups, including simple rocksalt and zinc blende 
structures, up to complex perovskites. Using the high-throughput 
framework FHI-vibes [1] and a recently developed measure for the strength 
of anharmonicity [2], we identify 120 candidate materials with potential for 
low thermal conductivity at room temperature. We investigate the 60 most 

promising candidates with the ab initio Green Kubo method (aiGK) [3], 
enabling data-driven extraction of design principles for bulk materials with 
low thermal conductivity. The aiGK method provides an accurate 
framework to obtain thermal conductivities for materials, in particular 
strongly anharmonic ones such as thermal barrier coating ceramics like 
zirconia, since all anharmonic effects responsible for low thermal 
conductivity are included.We subsequently demonstrate how the first 
principles calculations can be complemented with the help of machine 
learning potentials to remove the computational bottleneck. For this task, 
we use message passing neural networks, a class of models that can 
accommodate implicit long-range interactions as well as directional 
information [4]. We present a systematic account of their performance for 
calculating the thermal conductivity of solid semiconductors and insulators 
and discuss implications for high-thoughput heat transport simulations and 
the discovery of novel thermal insulators. 

[1] F. Knoop et al., J. Open Source Softw. 5, 2671 (2020) 
[2] F. Knoop et al., Phys. Rev. Mater. 4, 083809 (2020) 
[3] C. Carbogno, R. Ramprasad, and M. Scheffler, Phys. Rev. 118, 175901 
(2017) 
[4] K.T. Schütt et al., J. Chem. Phys. 148 241722 (2018) 

4:40pm TS4-ThA-11 2D Phase Mapping of Hf-Al-Si Refractory Complex 
Concentrated Alloy Produced using High-Throughput Magnetron 
Sputtering, Sophia Cooper (sophiacooper@my.unt.edu), M. Dockins, M. 
Young, A. Voevodin, University of North Texas, USA; A. Ghoshal, V. Blair, 
U.S. Army Futures Command, USA; S. Aouadi, University of North Texas, 
USA 
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