

Atmospheric Pressure Plasma Deposition of low friction coatings on engineering thermoplastics: The plasma-process-structure in the versatile spray coating technique as basis of commercial applications

<u>Dietmar F. Kopp¹, Jürgen M. Lackner¹, Reinhard Kaindl¹, Wolfgang Waldhauser¹, Maximilian Stummer², Anna M. Coclite³</u>

The focus of this research is to apply several types of low friction coatings (*e.g.*) MoS₂, graphite) on different thermoplastic substrates with a hot gas plasma jet. Dry lubricant coatings are of interest from a fundamental point of view for nano and micro scale mechanical systems. MoS₂ belongs to the family of layered two-dimensional transitional metal dichalcogenides (TMDs). Such as graphite and hexagonal boron nitride, its crystal structure consists of covalently bonded sheets, which form stacks that are held together only by weak Van der Waals interactions^[1].

JOANNEUM RESEARCH Forschungsgesellschaft mbH

MATERIALS

Institute for Surface Technologies and Photonics Low friction coatings were deposited by an atmospheric pressure plasma jet (APPJ) of laboratory size, equiped with an Inocoat plasma head of 3rd generation (IC3).

Dietmar Kopp

Tribological characterizations by an Anton Paar Micro Combi Tester

In Fig. 2 the cross-section of a MoS₂ coating on PA 12 substrate including EDS mapping of Mo and S is given. The porous structure of the ~130 µm thick coating after 40 passes of the plasma jet and the preferable deposition within roughness "valleys" are visible.

Fig. 2 Cross-section SEM image of a MoS₂ coating on smooth PA12 substrate deposited by 40 coating passes (A) and EDS element distribution images (B) of Mo and S. The chemical composition (atom%) of "spectrum 92" is 7.0% Mo, 4.2% S, 14.5% O, 67.3% C and 7.0% N.

The tribological performance of the MoS_2 coating vs. the MoS_2 -C composite on the PA 12 substrate is given in Fig. 3.

Leobner Straße 94a 8712 Niklasdorf, Austria Phone +43 316 876-33 04 Fax +43 316 8769-33 04 dietmar.kopp@joanneum.at

materials@joanneum.at www.joanneum.at/materials (MCT 01-06315)

- Evaluating the coefficient of friction (COF) and relative penetration depth
- Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS) analysis by TESCAN-SEM Vega 3
 - Distribution of elements of the coating inside/outside the wear track
 - Cross-section investigations *i.e.* coating thickness, distribution of elements

INOCON Technologie GmbH Wiener Straße 3 4800 Attnang Puchheim, Austria

Lab coating plant

The coating principle as well as a robot controlled system that is developed and industrialized by INOCON Technology GmbH is illustrated in Fig. 1.

∃ 0,5 -

Fig. 3 <u>A</u>: COF (left) and relative penetration depth (right) of MoS₂ APPJ coatings in dependency of the coating thickness (doubled coating pass number [#] 20 vs. 40) at similar power of APPJ (measured by the discharge current, 200 [A]), coating pass speed 150 [mm/s] and a distance plasma jet nozzle – PA 12 upper surface of 50 [mm]. Coatings on smooth PA12 substrates; <u>B</u>: COF (left) and relative penetration depth (right) of MoS₂-graphite APPJ composite coatings. Coatings on rough PA 12 substrates

Institute of Solid State Physics Graz University of Technology Petersgasse 16 8010 Graz, Austria

Fig. 1 Coating process within the APPD; Image was kindly provided by INOCON Technologie GmbH.

Conclusions

Surface topographical dependency with respect to adhesion properties

Mechanical anchoring phenomenon of the APPJ

SEM/EDS analysis by TESCAN-SEM Vega 3

Elemental composition of the coating (inside/outside the wear track) changes

References

[1]

K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H.C. Neto. 2D materials and van der Waals heterostructures, Science, 353:461, 2016.

THE INNOVATION COMPANY

