Supplemental Information

The Effect of the Precursors and Chemical Vapor Deposition Process on the Synthesis of Two-Dimensional Molybdenum Nitride Nanomaterials

Cheng-Chi Peng, Bo-Cyuan Lin, Hau-Gung Chen, Lu-Chih Chen, Sheng-Kuei

Chiu*

Department of Materials Science and Engineering, Feng Chia University,

Taichung, Taiwan

*Corresponding authors. E-mail addresses: skuechiu@o365.fcu.edu.tw (S.K. Chiu)

This study utilizes the MoS₂ thin film that was grown on the Si/SiO₂ substrate in our laboratory. We manipulate the replacement temperature and temperature holding time and carry out high-temperature nitridation. As a result, we effectively substitute the sulfur element with the nitrogen element, leading to the synthesis of the MoN thin film material. The AFM analysis revealed a significant reduction in film thickness after the replacement. The XPS analysis revealed the absence of any detectable Mo and S bonding energy signals after the completion of the nitridation process. The experiment effectively replaced MoS₂ with a MoN film.

Fig. S1. Raman spectrum of (a) MoS_2 , (b) MoO_3 and (c) Conv. MoN, Raman mapping at (d-f) MoS_2 characteristic peak E_{2g} (385 cm⁻¹), (g-i) MoO_3 820 cm⁻¹ and (j-l) MoN 144 cm⁻¹, respectively. (// is SiO₂/Si substrate).