MA5. Boron-containing Coatings:

Superhard single-phase Ti_{1-x}Al_xB_y films with good oxidation resistance grown without external heating using hybrid HiPIMS/DCMS technique

<u>Bartosz Wicher</u>^a, Vladyslav Rogoz^a, Oleksandr Pshyk^{a,b}, Szilard Kolozsvari^c, Peter Polcik^c, Ivan Petrov^{a,d}, Lars Hultman^{a,e}, Grzegorz Greczynski^a

^aThin Film Physics Division, Department of Physics (IFM), Linkoping University, Linkoping SE-58183, Sweden,

^bLaboratory for Surface Science and Coating Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland, ^cPlansee Composite Materials GmbH, Siebenbürgerstr. 23, Lechbruck am See, D-86983 Germany, ^dMaterials Research Laboratory, University of Illinois, Urbana, IL 61801, United States, ^eCenter for Plasma and Thin Film Technology, Ming Chi University of Technology, New Taipei City 24301, Taiwan

A hybrid High-Power Impulse Magnetron Sputtering (HiPIMS) and Direct Current Magnetron Sputtering (DCMS) approach with TiB_2 and AIB_2 targets is used to grow $Ti_{1-x}AI_xB_y$ thin films with $0.40 \le x \le 0.76$ and $1.81 \le y \le 2.03$. The hybrid sputtering method ensures precise control over the energy and momentum of ionized species. The primary aim is to optimize the Al content for enhancing the high-temperature oxidation resistance while maintaining excellent mechanical properties that stem from the diboride structure. No external substrate heating is used resulting in the substrate temperature lower than $180^{\circ}C$.

Oxidation tests performed at temperatures ranging from 700 to 900 °C indicate a substantial improvement in oxidation resistance with higher Al content. Films with $x \le 0.49$ develop porous, B-depleted oxide layers containing titanium dioxide (TiO₂) phase and often exhibit spallation. In contrast, Ti_{1-x}Al_xB_y thin films with $x \ge 0.58$ form compact oxide scales composed of amorphous alumina (Al₂O₃) and borate (Al₁₈B₄O₃₃) phases, which effectively passivate the surface against further oxidation. The oxide scales formed on high-Al content films are much denser and exhibit markedly improved mechanical properties with increased hardness (up to 27.3 GPa, comparable to TiAlN coatings), and also a better adhesion to the underlying substrate material due to better matching of thermal expansion coefficients.

These findings offer a promising foundation for developing high-performance boride-based coatings for applications in the industries such as aerospace and power generation that require coating materials with mechanical strength and resistance to high-temperature oxidation.

Acknowledgment

Bartosz Wicher is grateful to the ÅForsk Foundation for personal travel grant (ref.nr 24-721).

Corresponding Author:

Bartosz Wicher E-mail: <u>bartosz.wicher@liu.se</u>