
Fluorine-Doped Tin Oxide Aerogel Support for Pt Catalysts: Enhancing Hydrogen Evolution Reaction via Sustainable Interface Engineering

Hyung-Ho Park^{1,2+}, Taehee Kim¹

¹Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea ²Aerogel Materials Research Center, Yonsei University, Seoul 03722, Korea ⁺Author for correspondence: hhpark@yonsei.ac.kr

Fig. SEM images of the F-doped SnO₂ aerogel (a) before and (b) after the Pt deposition, (c) TEM image of the F-doped SnO₂ aerogel, (d) HRTEM image of F-SnO₂@Pt with two different interplanar spacings of SnO₂ and Pt, (e) HAADF-STEM image of F-SnO₂@Pt, showing Pt clusters on the F-SnO₂ aerogel matrix, with a bright field image of the same area. (f) EDX elemental mapping images of (g) Sn, (h) O, (i) F, and (j) Pt in F-SnO₂@Pt (all the F-SnO₂ structures represent 2 % F-SnO₂, unless otherwise stated).

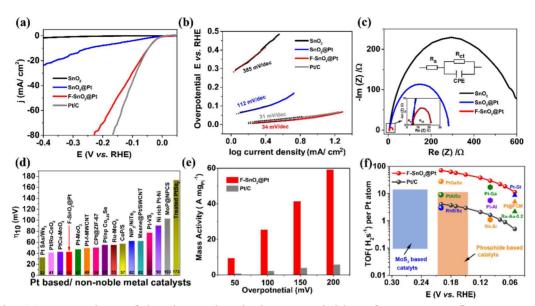


Fig. (a) Comparison of the electrochemical HER activities of SnO_2 , $SnO_2@Pt$, $F-SnO_2@Pt$, and Pt/C. (b) Tafel slopes plotted from the corresponding linear sweep voltammetry curves. The dotted line indicates the linear-fitted region with its slope value. (c) Electrochemical impedance spectroscopy spectra with the equivalent circuit diagram shown in the inset. The smallest semicircle (fitted line) is observed in the $F-SnO_2@Pt$ sample (inset). (d) Comparison of the overpotential (η_{10}) of $F-SnO_2@Pt$ with those of previously reported high-activity catalysts. (e) Calculated mass activity and (f) TOF of $F-SnO_2@Pt$ at different overpotentials.