

Figure 1(a) schematic of the proposed nanophotonic multilayer structure with emphasize of the material and thickness. (b) electromagnetic wave of the structure at wavelength 3 um and zero electric field at graphene layers. (c) shows the switchability of four different optimized structure with narrowband absorption at 3(um), 3.5 (um), 4 (um) and 4.5(um) at zero electric field and 1 (ev) electric field at graphene layers.

Reference:

- [1] A. K. Chowdhary, V. A. Reddy, and D. Sikdar, "Nanophotonics-enabled highefficiency selective solar absorbers for waste heat management," *IEEE Transactions on Nanotechnology*, vol. 21, pp. 131-136, 2022.
- [2] M. S. Asad, "Planar Multilayer Thin Film Coatings for Passive Winter Thermal Management," Queen's University (Canada), 2021.
- [3] H. Chen, C. Wang, H. Ouyang, Y. Song, and T. Jiang, "All-optical modulation with 2D layered materials: status and prospects," *Nanophotonics*, vol. 9, no. 8, pp. 2107-2124, 2020.
- [4] S. Sharifi, Y. M. Banadaki, V. Nezhad, G. Veronis, and J. Dowling, "Aperiodic multilayer graphene based tunable and switchable thermal emitter at mid-infrared frequencies," *Journal of Applied Physics*, vol. 124, no. 23, 2018.
- [5] L. Falkovsky and S. Pershoguba, "Optical far-infrared properties of a graphene monolayer and multilayer," *Physical Review B*, vol. 76, no. 15, p. 153410, 2007.
- [6] P.-Y. Chen and A. Alu, "Atomically thin surface cloak using graphene monolayers," *ACS nano*, vol. 5, no. 7, pp. 5855-5863, 2011.

Suplementary Pages

Table 1 shows the optimized thickness of nanophotonic multilayer structure in order to have narrowband absorption at 3(um), 3.5 (um), 4(um) and 4.5 (um).

Thickness (nm)	Model	M1(λ=3um)	M2(λ=3.5um)	M3(λ=4um)	M4(λ=4.5um)
PbSe		40.48	52.38	76.43	87.5
Graphene		0.3	0.3	0.3	0.3
Polymer		335.4	608.59	500.28	501.97
Graphene		0.3	0.3	0.3	0.3
Polymer		171.97	145.14	134.021	60.76
Graphene		0.3	0.3	0.3	0.3
Polymer		56.17	134.26	136.68	307.36
Graphene		0.3	0.3	0.3	0.3
Polymer		56.65	249.23	31.51	113.71
Graphene		0.3	0.3	0.3	0.3
Polymer		153.36	46.023	131.12	63.67
Graphene		0.3	0.3	0.3	0.3
Polymer		89.53	288.74	311.47	384.96
PbSe		110.26	100	99.87	80.23