"Incorporating ErAs into InGaAlBiAs Material by Interrupted Growth: Effects on Optical and Electronic Properties Targeting Terahertz Pulse Emitters and Detectors for Telecom Wavelength Excitation"

Wilder Acuna¹, Weipeng Wu², James Bork¹, M. Benjamin Jungfleisch², Lars Gundlach^{2,3} and Joshua M. O. Zide¹

¹ Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
² Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
³ Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA

Supplemental figures:

 Carrier dynamics measurement by Optical pump THz probe spectroscopy GT= Growth Temperature.

2. Structure representation of grown material.

3. High-resolution X-ray diffraction (004) $2\theta - \omega$ coupled scans of 300 nm strained [ErAs:(InGaBiAs)x (InAlBiAs)1-x] films with ~ 3.5% Bi and ~1% ErAs.