ErAs/Semiconductor Nanocomposites for 1.55 µm-pumped and Hybrid Terahertz Photoconductive Switches

Angelique Gordon¹, Wilder Acuna¹, Weipeng Wu², James Bork¹, Matthew Doty¹, Xi Wang¹,

M. Benjamin Jungfleisch², Lars Gundlach^{2,3}, and Joshua M. O. Zide¹

1 Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA

2 Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA

3 Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA

[1] W. Acuna, et al., Adv. Funct. Mater. 34, 2041853, (2024).

Figure 1: Structural representation of $ErAs:[(InGaBiAs)_x(InAlBiAs)_{1-x})]$ presenting the digital alloy period as well as the difference between co-deposition and interrupted growth techniques to incorporate ErAs.

Figure 2: Impact on ErAs:InGa(AlBi)As properties due to growth temperature and ErAs incorporation methods: co-deposition vs. interrupted growth. Altering ErAs growth techniques resulted in a four orders of magnitude reduction in carrier concentration and a similar increase in bulk resistivity [1].

Figure 3: Carrier dynamics measured by Optical Pump (800nm) THz probe spectroscopy demonstrating the fast decay time components in ErAs:InGaAlBiAs materials where sub-picosecond dynamics have been achieved [1]. (GT = Growth Temperature)

Figure 4: ErAs:InGaAlBiAs detector with fabricated bowtie-shaped photoconductive switch with a 10 μ m gap proof of concept results from (a) time domain THz spectroscopy mapping the THz pulse at different laser power levels, and (b) frequency domain, using a fast Fourier-transformed spectrum, showing broadband detection (0.1-1.1 THz) using 1550nm excitation [1].