Supplemental Information

Epitaxial Growth and Optical Properties of GeSn Alloys on Ge (100) and Si (100) via Molecular Beam Epitaxy

<u>N M. Eldose</u>,¹ D. Zhang,¹ D. Baral,¹ H. Stanchu,¹ FM de Oliveira,¹ S. Acharya,² W. Du,^{1,2} S Q. Yu,^{1,2} and G J. Salamo¹

¹Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas, USA

²Department of Electrical Engineering and Computer Science, University of Arkansas, Fayetteville, Arkansas, USA

Fig 1. (a) Schematic diagram of GeSn layer (b) 2θ-ω scans and RSMs of GeSn layers with 11.4% Sn content (c) Optical image of 2-inch wafer of GeSn grown on Si (100) substrate (d)SIMS depth profile of Ge and Sn (e) Temperature dependent PL measurements from a GeSn layer with 11.4% Sn content.

High Sn content GeSn strained thin layers, and relaxed layers were successfully grown on Ge (100) substrates using MBE using effusion cells.

Fig. 2: Top panel: Sample structure of GeSn with varying thicknesses for studying strain relaxation, grown on Ge(001). Bottom panel: Corresponding AFM images

Fig. 3: XRD-RSM study of GeSn near Ge (224), showing different degrees of strain relaxation of the GeSn layers. (a) Sample S1 and (b) sample S2 are fully strained. (c - f) Samples S3 to S6 relaxes from 20 % to 85% with increasing GeSn layer thickness.

Fig. 4. Temperature dependent PL spectra acquired (a) 532 nm and (b) 1064 nm lasers on GeSn alloy grown in Ge (001) substrate using MBE.