

FIG.1. (a) n-GaN epilayer grown by NH₃-MBE. (b) Doping vs. depth profile via MOS C-V. (c) Electrical properties of n-GaN from room temperature Hall effect measurements.

FIG.3. (a) C-V characteristics of NiO_x/n⁺ GaN heterojunction diode at 10 kHz on 200- μ m dia. devices (b). 1/C² vs. reverse bias of the heterojunction diode at 10 kHz on 200- μ m dia. devices.

FIG.2. MOS C-V and sputtered NiO_x diode on n^+ GaNon-sapphire template used for acceptor (N_a) concentration extraction

FIG.4. (a) I-V characteristics of etched n-GaN Ohmic contact from circular transmission line measurements (CTLM) (b). Resistance fits from CTLM with R_{sheet} and ρ_c extracted.

FIG.5. (a) NiO_x/GaN super-heterojunction. (b) NiO_x/GaN super-heterojunction reference structure without NiO_x extension.

FIG.6. (a-c) Linear forward J-V characteristics of NiO_x/GaN SHJ with anode-to-cathode distance of 16, 25, and 50-µm. (d-f) Semilog J-V forward characteristics of NiO_x/GaN SHJ with anode-to-cathode distance of 16, 25, and 50-µm with ideality factor extracted.

FIG.7. Breakdown characteristics of NiO_x/GaN SHJ, reference structure, and SHJ passivated by SU-8 with anode-to-cathode distance of (a) 16, (b) 25, and (c) 50- μ m.

FIG.8. Optical microscopic images of NiO_x/GaN SHJ submerged in silicone oil after catastrophic breakdown under reverse bias.

FIG.9. Benchmarking of NiO_x/GaN SHJ with existing GaN-based lateral superjunction devices.