Antiferromagnetic ordering in atomically thin 2-dimensional
materials studied by Raman spectroscopy
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Magnetism in low dimensional systems is attracting much interest not only for the
fundamental scientific interest but also as a promising candidate for numerous applications
in sensors and data storage. However, most experimental studies on magnetism in 2-
dimension so far have been limited to the magnetism arising from defects, vacancies, edges
or chemical dopants which are all extrinsic effects. Recent discovery of ferromagnetism in
atomically thin materials [1,2] ignited much interest in magnetism in 2 dimension in
general. Antiferromagnetic ordering, on the other hand, is much more difficult to detect as
the net magnetism is zero. Neutron scattering, which is a powerful tool to detect
antiferromagnetic order in bulk materials, cannot be used for atomically thin samples.
Raman spectroscopy has proven a powerful tool to detect ferromagnetic ordering by
monitoring the zone-folding due to the antiferromagnetic order [3,4] or the signal from two
magnon scattering. We report on the observation of intrinsic antiferromagnetic ordering in
the two-dimensional limit. We demonstrate that FePSz exhibits an Ising-type
antiferromagnetic ordering down to the monolayer limit, in good agreement with the
Onsager solution for two-dimensional
order-disorder transition. The
transition temperature remains almost £
independent of the thickness from bulk £
to the monolayer limit with Ty ~118 K, £ 100
£
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indicating that the weak interlayer
interaction has little effect on the
antiferromagnetic ordering. [4] For an ‘ : e
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signal due to two-magnon scattering
and the low-energy scattering signal
due to spin fluctuations are monitored
to find antiferromagnetic ordering
down to the monolayer limit. [5]

Peak height (normalized)

Figure 1. Evolution of Raman spectrum of
FePSs (left) and comparison of Neel
temperature for different thickness (right)
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Figure 1. (a) Temperature dependence of Raman spectrum for bulk FePSs. (b) Temperature
dependence of magnetic susceptibility along a or b (black spheres) and c¢ (grey spheres)
axes. (c) Temperature dependence of intensities of several Raman peaks.
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Figure 2. (a) Optical contrast and (b) atomic force microscope images of 1L FePS3 on
SiO2/Si substrate. (c) Temperature dependence of Raman spectrum of 1L FePSz with
polarization direction of a=£=45° (d) Thickness dependence of Ps and P4 with polarization
direction of a=45°(red curves) and a=90° (blue curves). (¢) Temperature dependence of P1a
peak height for different thicknesses.



