Large positive linear magnetoresistance in the two-dimensional t_{2g} electron gas at the EuO/SrTiO₃ interface

K. J. Kormondy,¹ L. Gao,¹ X. Li,² S. Lu,³ A. B. Posadas,¹ S. Shen,¹ M. Tsoi,¹ M. R. McCartney,⁴ D. J. Smith,⁴ J. Zhou,² L. L. Lev,^{5,6} M.-A. Husanu,^{5,7} V. N. Strocov,⁵ and A. A. Demkov¹

¹Department of Physics, The University of Texas at Austin, Austin, Texas, 78712, USA ²Materials Science and Engineering Program/Mechanical Engineering, University of Texas at Austin, Austin, Texas, 78712, USA

³School of Engineering for Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA

⁴Department of Physics, Arizona State University, Tempe, Arizona, 85287, USA ⁵Paul Scherrer Institute, Swiss Light Source, CH-5232 Villigen PSI, Switzerland ⁶National Research Centre "Kurchatov Institute", 1 Akademika Kurchatova pl., 123182 Moscow, Russia

⁷National Institute of Materials Physics, 405A Atomistilor Str. 077125, Magurele, Romania

The high mobility two-dimensional t_{2g} electron gas (2DEG) present at oxide/oxide interfaces is currently under intense investigation [1-2]. In this talk, we will discuss the integration of highly spinsplit ferromagnetic semiconductor EuO onto perovskite SrTiO₃ (001). A careful deposition of Eu metal by molecular beam epitaxy results in crystalline EuO growth via oxygen out-diffusion from SrTiO₃ [3]. This in turn leaves behind a highly conductive interfacial layer through generation of oxygen vacancies. Below the Curie temperature of 70 K of EuO, this spin-polarized two-dimensional t_{2g} electron gas at the EuO/SrTiO₃ interface displays very large positive linear magnetoresistance (MR). Soft x-ray angle-resolved photoemission spectroscopy (SX-ARPES) reveals the t_{2g} nature of the carriers. First principles calculations strongly suggest that Zeeman splitting, caused by proximity magnetism and oxygen vacancies in SrTiO₃, is responsible for the MR [4]. This system offers an asyet-unexplored route to pursue proximity-induced effects in the oxide two-dimensional t_{2g} electron gas [5].

J. K Lee, N. Sai, and A. A. Demkov, Phys. Rev. B 82, 235305 (2010).
K. D. Fredrickson and A. A. Demkov, J. Appl. Phys. 119, 095309 (2016).
A. B. Posadas, K. J. Kormondy, W. Guo, P. Ponath, J. Geler-Kremer, T. Hadamek, and A. A. Demkov, J. Appl. Phys. 121, 105302 (2017).
L. Gao and A. A. Demkov, Phys. Rev. B 97, 125305 (2018).
K. J. Kormondy, L. Gao, X. Li, S. Lu, A. B. Posadas, S. Shen, M. Tsoi, M. R. McCartney, D. J. Smith, J. Zhou, L. L. Lev, M. Husanu, V. N. Strocov, and A. A. Demkov, *Scientific Reports* 8, 7721 (2018).

+ Author for correspondence: demkov@physics.utexas.edu