A Topological Superconductor Tuned by Electronic Correlations

H. Lin,¹ C. L. Jacobs,² C. Yan,¹ G. Nolan,³ P. Singleton,¹ Y. Bai,¹ Q. Gao,¹ G. Berruto,¹ D. Nguyen,¹ X. Wu,⁴ C. Liu,⁵ N. Guisinger, ⁶ P. Huang, ³ S Mandal, ² S. Yang¹

 ¹ Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA.
² Department of Physics and Astronomy, West Virginia University, Morgantown, WV, USA.
³ Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, Urbana, IL, USA.

⁴ Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, P.R.China.
⁵ Department of Physics, Pennsylvania State University, University Park, PA, USA.
⁶ Argonne National Laboratory, Lemont, IL, USA.

A topological superconductor, characterized by either a chiral order parameter [1] or a chiral topological surface state in proximity to bulk superconductivity [2], is foundational to topological quantum computing. Similar to other topological phases of matter, it can be profoundly tuned by electronic correlations through the modification of low-energy Fermiology, but not elucidated so far.

[1] A. Kitaev, AIP Conf. Proc. 1134, 22 (2009).

- [2] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
- [3] H. Lin et al. In Review (2024).
- [4] M. Kim, S. Choi, W. H. Brito, and G. Kotliar, Phys. Rev. Lett. 132, 136504 (2024).

Supplementary Page

Figure 2. Topological phase diagram of 10 UC FeTe_xSe_{1-x} thin films. The onset transition temperature (T_c^{onset}) and the temperature (T_c^0) at which the resistance reaches 1% of the normal state resistance at 20 K are plotted against Te content, x. The blue curve shows the effective mass of the d_{xy} band as a function of x. Near the FeTe limit, an undefined phase emerges, characterized by smeared topological surface states originating from localized electrons within the OSCP. Concurrently, this region also exhibits a suppression of superconductivity.